Nested Vector Language: Roofline Performance for Data Parallel Code

Shoumik Palkar, James Thomas, Matei Zaharia

Motivation
- Writing fast parallel code is **hard**.
- Numerous complex evolving platforms (GPUs, CPUs) and techniques (multicore, SIMD).
- Many common algorithms can be written through “embarrassingly parallel” data operations.
- **MapReduce** is empirical example
- Libraries like Numpy, Pandas, MLLib emit this language (programmers write high level code)

Focus on parallel operations.

Overview and Examples
- Small language with closed transformations
- Few types: vectors, structs, dictionaries, primitives
- **Builders** compose partial results associatively
 - like Clik’s reducers, Spark’s Accumulator
- **Iteration** is the only fundamental parallel construct
 - Some specialization: SIMD, multicore, etc.
- Functional ops implemented as library

Implementing map

```plaintext
map(v: vec[T], func: (x: T) => U) =>
for(v, vecBuilder[T], func)
```

Future Work
- More transformations like loop blocking
- GPU backend
- Joint optimization over pipelined workloads

Parallelization
- Single data-parallel construct to parallelize – for loop
- Two main challenges
 1. Dynamic load balancing among cores
 2. Parallel state construction with builders
- Solutions
 1. Steal queued work from outermost loop of other cores
 2. Per-core state & merge into global state when size threshold crossed

Preliminary Results
- TPC-H Query 6
- 5GB dataset
- Python implementation: 0.533s
- 2.5x speedup even on simple code!

Ongoing work: which branches shouldn’t be vectorized?
Based on selectivity of branches, complexity of predicated code.

Vectorization
- Goal: leverage SIMD instructions to exploit data-parallelism on a single CPU

```plaintext
%res = add i32 %op1 %op2
%res = add <8 x i32> %op1 %op2
```

Parallelization
- Cilk’s reducers, Spark’s Accumulator
- Some specialization: SIMD, multicore, etc.
- Functional ops implemented as library

Implementing map

```plaintext
map(v: vec[T], func: (x: T) => U) =>
for(v, vecBuilder[T], func)
```

Future Work
- More transformations like loop blocking
- GPU backend
- Joint optimization over pipelined workloads

Parallelization
- Single data-parallel construct to parallelize – for loop
- Two main challenges
 1. Dynamic load balancing among cores
 2. Parallel state construction with builders
- Solutions
 1. Steal queued work from outermost loop of other cores
 2. Per-core state & merge into global state when size threshold crossed

Preliminary Results
- TPC-H Query 6
- 5GB dataset
- Python implementation: 0.533s
- 2.5x speedup even on simple code!

Ongoing work: which branches shouldn’t be vectorized?
Based on selectivity of branches, complexity of predicated code.

Vectorization
- Goal: leverage SIMD instructions to exploit data-parallelism on a single CPU

```plaintext
%res = add i32 %op1 %op2
%res = add <8 x i32> %op1 %op2
```

Parallelization
- Cilk’s reducers, Spark’s Accumulator
- Some specialization: SIMD, multicore, etc.
- Functional ops implemented as library

Implementing map

```plaintext
map(v: vec[T], func: (x: T) => U) =>
for(v, vecBuilder[T], func)
```

Future Work
- More transformations like loop blocking
- GPU backend
- Joint optimization over pipelined workloads

Parallelization
- Single data-parallel construct to parallelize – for loop
- Two main challenges
 1. Dynamic load balancing among cores
 2. Parallel state construction with builders
- Solutions
 1. Steal queued work from outermost loop of other cores
 2. Per-core state & merge into global state when size threshold crossed

Preliminary Results
- TPC-H Query 6
- 5GB dataset
- Python implementation: 0.533s
- 2.5x speedup even on simple code!

Ongoing work: which branches shouldn’t be vectorized?
Based on selectivity of branches, complexity of predicated code.

Vectorization
- Goal: leverage SIMD instructions to exploit data-parallelism on a single CPU

```plaintext
%res = add i32 %op1 %op2
%res = add <8 x i32> %op1 %op2
```

Parallelization
- Cilk’s reducers, Spark’s Accumulator
- Some specialization: SIMD, multicore, etc.
- Functional ops implemented as library

Implementing map

```plaintext
map(v: vec[T], func: (x: T) => U) =>
for(v, vecBuilder[T], func)
```

Future Work
- More transformations like loop blocking
- GPU backend
- Joint optimization over pipelined workloads

Parallelization
- Single data-parallel construct to parallelize – for loop
- Two main challenges
 1. Dynamic load balancing among cores
 2. Parallel state construction with builders
- Solutions
 1. Steal queued work from outermost loop of other cores
 2. Per-core state & merge into global state when size threshold crossed

Preliminary Results
- TPC-H Query 6
- 5GB dataset
- Python implementation: 0.533s
- 2.5x speedup even on simple code!

Ongoing work: which branches shouldn’t be vectorized?
Based on selectivity of branches, complexity of predicated code.