A Demonstration of the BigDAWG Polystore System

Motivation

- Hybrid applications are becoming common
- Use many back-ends, lots of data models, single dataset
- Example: MIMIC II, intensive care unit dataset
- Workflow contains:
 - Streaming for heartbeat monitoring
 - Complex analytics for data mining
 - Browsing schemas and patients individually
- Data Exploration or “tell me something interesting”
- Need a unified interface for diverse users and their workloads

The BigDAWG Polystore

- A polystore is a federated db system for multiple, disparate data models
- Polystore requirements:
 - Location transparency
 - Semantic completeness
 - N:N relationship between user semantics and back-ends
- BigDAWG achieves data independence with islands of information. Each contains a
 - Data model, query language, shims to dbs
- Users pose queries by invoking islands with scope and casting between disparate semantics. Example: RELATIONAL

```sql
SELECT * FROM R, CAST(A, relation) WHERE A.v = R.v;
```

Technologies for Visualization of Big Medical Text Data

Lelani Leite, Lauren Edmonds, Vigna Godbole, Brandon Harms, Nadine Makarenko, Dylan Hitchcock, Jeremy Kaper, Anil Moran

ABSTRACT

The SPT BigData Pipeline, aiming to process biomedical data, includes a modular platform to transform raw data into structured, human-readable data. This project uses a modular design to visualize data from multiple sources, including heterogeneous data types.

System Prototype

The pipeline can be configured to support processing with a range of query analyzers, including relational DBMSs and graph databases. The system can be extended to support streaming data from multiple sources.

Future Work

- Explore new data sources
- Implement new query analyzers
- Improve performance

SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics

Manasvi Varrak, Sajjad Rahaman, Samuel Maddess, Aditya Parameeswaran, Neoklos Polyzois

Motivation

- Data visualization first step in analysis
- High-dimensional data 100s of visualizations Manual specification
- Automation for rapid analysis
- Automatically identify and recommend “interesting” visualizations

Approach

- Interestingness metrics defined via metrics: Visualization Image saliency in showdevs
- Techniques for interactive visualization
- Detection of interesting insights
- Automatic visualization recommendations

System Architecture

- Visualizations on a “what’s new” list
- Require interactive latency
- Automatic visualization recommendations

Evaluation

- User Study: Comparison of manual vs. automated suggestions
- SeeDB ranking along with number of bookmarks [F1 vs. 18.398; p = 0.001]