
S-Store: Streaming Meets Transaction Processing

John Meehan1, Nesime Tatbul2,3, Stan Zdonik1, Cansu Aslantas1,
Ugur Cetintemel1, Jiang Du4, Tim Kraska1, Samuel Madden3, David Maier5,

Andrew Pavlo6, Michael Stonebraker3, Kristin Tufte5, Hao Wang3

1Brown University 2Intel Labs 3MIT 4University of Toronto 5Portland State University 6CMU

ABSTRACT
Stream processing addresses the needs of real-time applications.
Transaction processing addresses the coordination and safety of
short atomic computations. Heretofore, these two modes of op-
eration existed in separate, stove-piped systems. In this work, we
attempt to fuse the two computational paradigms in a single sys-
tem called S-Store. In this way, S-Store can simultaneously ac-
commodate OLTP and streaming applications. We present a sim-
ple transaction model for streams that integrates seamlessly with
a traditional OLTP system, and provides both ACID and stream-
oriented guarantees. We chose to build S-Store as an extension of
H-Store - an open-source, in-memory, distributed OLTP database
system. By implementing S-Store in this way, we can make use of
the transaction processing facilities that H-Store already provides,
and we can concentrate on the additional features that are needed
to support streaming. Similar implementations could be done using
other main-memory OLTP platforms. We show that we can actu-
ally achieve higher throughput for streaming workloads in S-Store
than an equivalent deployment in H-Store alone. We also show how
this can be achieved within H-Store with the addition of a modest
amount of new functionality. Furthermore, we compare S-Store to
two state-of-the-art streaming systems, Esper and Apache Storm,
and show how S-Store can sometimes exceed their performance
while at the same time providing stronger correctness guarantees.

1. INTRODUCTION
A decade ago, the database research community focused atten-

tion on stream data processing systems. These systems [10, 16], in-
cluding our own system, Aurora/Borealis [7, 8], were largely con-
cerned with executing SQL-like operators on an unbounded and
continuous stream of input data. The main optimization goal of
these systems was reducing the latency of results, since they mainly
addressed what might be called monitoring applications [28, 30].
To achieve this, they were typically run in main memory, thereby
avoiding the extreme latency caused by disk access.

While essentially all of the monitoring applications that we en-
countered had a need for archival storage, the system-level support
for this was limited and ad hoc. That is, the systems were largely
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not designed with storage in mind; it was tacked on after the fact.
Thus, there was no support for things like ACID transactions, leav-
ing applications open to potential inconsistencies with weak guar-
antees for isolation and recovery.

These first-generation streaming systems could be viewed as real-
time analytics systems. After all, the input was made up of an in-
finite stream of new tuples. The notion of some of these tuples
representing updates of previously viewed tuples (or causing up-
dates to other stored data that is related) was not made explicit in
the model. This is fine if time is the key. In this case, if each tuple is
given a unique timestamp, the update pattern is append-only. How-
ever, there are cases when the identifying attribute is something
else. Consider a stock ticker application in which stock symbol is
the key. Here a new tuple for, say, IBM is really an update to the
previously reported price. Traders want to see the current stock
book as a consistent view of the 6000 stocks on the NYSE, with
all prices reported in a consistent way. Thus, these applications
introduce the need for shared mutable state in streaming systems.

We are beginning to see the rise of second-generation streaming
systems [1, 2, 9, 32, 33, 37, 40]. These systems do not enforce a
relational view on their users. Instead, they allow users to create
their own operators that are invoked and managed by a common
infrastructure. Note that it is reasonable to have libraries of com-
mon operators (including relational) that manipulate tables. The
infrastructure enforces some model of failure semantics (e.g., at-
least-once or exactly-once processing), but still ignores needs of
proper isolation and consistent storage in the context of updates.

Meanwhile, the advent of inexpensive, high-density RAM has
led to a new generation of distributed on-line transaction processing
(OLTP) systems that store their data in main memory, thereby en-
abling very high throughput with ACID guarantees for workloads
with shared mutable state (e.g., [6, 18, 29]). However, these sys-
tems lack the notion of stream-based processing (e.g., unbounded
data, push-based data arrival, ordered processing, windowing).

Many applications that involve shared mutable state in fact need
aspects of both streaming and transaction processing. In this paper,
we propose to combine these two computational paradigms in a
single system called S-Store.

1.1 Example Use Cases
Applications that benefit from this kind of hybrid system gen-

erally include those that use the streaming facilities to record per-
sistent state or views in shared tables (in near real-time), and at
the same time use the transactional facilities to ensure a consistent
representation or summary of this state (e.g., dashboards or leader-
boards [14]). We now describe two selected use cases as examples.
Real-Time Data Ingestion. An analytics warehouse must be up-
dated periodically with recent activity. It was once the case that
this was done once a day (typically at night) when there was little



Figure 1: FIX Trading Example

to no load on the system. Nowadays, systems must be available
at all times and the latency window for loading new data is quickly
shrinking. Also, new data must be added to the warehouse in a con-
sistent fashion (e.g., groups of updates must be added atomically)
[23]. This suggests that a transaction mechanism is needed. Even
more interesting is the fact that incoming data is typically in differ-
ent formats and is often dirty. ETL tools can address some of the
problems of data cleaning and integration, but they work with files
of bulk updates. This is slow and cumbersome, and cannot load
the warehouse in near real time. Thus, there is a need for some-
thing similar to ETL that instead works on streaming data. S-Store
is well-positioned to satisfy this need, and in fact is already being
used for this purpose in the BigDAWG system [19].
Shared Mutable State. S-Store is useful beyond real-time ETL, as
illustrated in the example depicted in Figure 1. In the figure, rectan-
gles represent transactions; oil drums represent stored, shared data;
skinny arrows represent reads and writes of stored data; and block
arrows represent streams. This example is based on customer ex-
perience at TIBCO StreamBase, Inc [4]. It is a simplified version
of intelligent order routing with FIX (Financial Information eX-
change) data.

Notice that FIX data arrives on a stream and is processed by a
transaction (Check and Debit Order Amount) that checks the buyer’s
account balance and puts a temporary hold on the funds involved
in that transaction in the Buying Power database. When this is suc-
cessful, the Venue Selection transaction determines to which ex-
change the order is to be sent. This can be a complex process
that involves checking, e.g., the history of a particular exchange
with the given security, and may involve retrieving data from other
databases not shown in the figure. Thus, it is modeled as a separate
transaction so that the Buying Power database is available to other
transactions, before the Venue Selection transaction is complete.

Also, Venue Selection requires isolation, since it has to make its
decision based on a consistent state (e.g., there may be other, inde-
pendent OLTP transactions accessing the Customer Orders database
as shown in the figure). The bold red arrow that connects these two
transactions expresses a dependency between them which requires
that for a particular FIX input, Check and Debit Order Amount
must precede Venue Selection. This illustrates the need for trans-
action ordering. Moreover, when Check and Debit Order Amount
commits, Venue Selection needs to be triggered (push-based pro-
cessing). At the bottom of the figure, the Update Order transaction
takes input from the exchanges, and confirms or denies previously
placed orders. In the case of a failed order, it will return funds to
the customers account. This can obviously conflict with new orders
from the same customer. Thus, Check and Debit Order Amount and
Update Order must both be transactions to guarantee consistency
through isolation.

If we used only a pure stream processing system to implement
this use case, we would be able to ensure ordering and push-based
processing. However, the isolation requirements of the application
would not be expressible. If we used a pure OLTP DBMS instead,
we would be able to ensure isolation, but would be unable to take
advantage of push-based processing. Transaction ordering would
need to be managed at the client, requiring unnecessary context
switches and a need to poll the interface for new data. Today, use
cases like this are implemented with in-memory data structures,
careful custom coding, and recovery based on replaying message
logs. We believe that a platform like S-Store reduces user code
complexity.

1.2 Contributions and Outline
This paper introduces the design and implementation of S-Store,

a single system for processing streams and transactions with well-
defined correctness guarantees. Our approach to building such a
system is to start with a fully transactional OLTP main-memory
database system and to integrate additional streaming functional-
ity. By doing so, we are able to leverage infrastructure that already
addresses many of the implementation complexities of transaction
processing. This choice is very natural, since streaming systems
largely run in main memory to achieve low latency. More specifi-
cally, this work makes the following key contributions:
Model. We define a novel, general-purpose computational model
that allows us to seamlessly mix streaming transactions with ordi-
nary OLTP transactions. Stream processing adds additional seman-
tics to an OLTP engine’s operating model. In particular, stream pro-
cessing introduces the notion of order to the transaction mix. That
is, it is possible to say that one transaction must precede another,
something that is missing from the non-deterministic semantics of
a standard transaction model. Further, since streams are unbounded
and arrive on a continuous basis, there is a need to add the necessary
primitives for bounding computation on streams, such as batch-
based processing [10, 27] and windowing [12, 24]. Finally, stream-
ing transactions support a push-based processing model, whereas
OLTP transactions access state in a pull-based manner. Our hybrid
model provides uniform access to state for all transactions.
Architecture and Implementation. We show how our hybrid com-
putational model can be cleanly and efficiently implemented on
top of a state-of-the-art main-memory OLTP engine (H-Store [29]).
Our architectural extensions are general enough to be applied to any
main-memory OLTP engine, and include: (i) streams and windows
represented as time-varying state, (ii) triggers to enable push-based
processing over such state, (iii) a streaming scheduler that ensures
correct transaction ordering, and (iv) a variant on H-Store’s recov-
ery scheme that ensures exactly-once processing for streams. Note
that the discussion in this paper is confined to the single-node case;
multi-node S-Store is the topic for follow-on research.
Performance. We provide a detailed study of S-Store’s perfor-
mance characteristics, specifically the benefits of integrating trans-
actional state processing with push-based processing. For stream-
ing workloads that require transactional state, S-Store demonstrates
improved throughput over both pure OLTP systems and pure stream-
ing systems. In both cases, the advantage is a direct result of inte-
grating state and processing, removing blocking during communi-
cation between the dataflow manager and the data-storage engine.

The rest of this paper is organized as follows: We first describe
our computational model for transactional stream processing in Sec-
tion 2. Section 3 presents the design and implementation of the
S-Store system, which realizes this model on top of the H-Store
main-memory OLTP system [29]. In Section 4, we present an ex-
perimental evaluation of S-Store in comparison to H-Store, as well



as to two representative stream processing systems - Esper [3] (first
generation) and Storm [37] (second generation). We discuss related
work in Section 5, and finally conclude the paper with a summary
and a discussion of future research directions in Section 6.

2. THE COMPUTATIONAL MODEL
In this section, we describe our computational model for trans-

actional stream processing. This model allows us to support hy-
brid workloads (i.e., independent OLTP transactions and streaming
transactions) with well-defined correctness guarantees. As we will
discuss in more detail shortly, these guarantees include:

1. ACID guarantees for individual transactions
(both OLTP and streaming)

2. Ordered Execution guarantees for dataflow graphs of
streaming transactions

3. Exactly-Once Processing guarantees for streams
(i.e., no loss or duplication)

S-Store acquires ACID guarantees from the traditional OLTP
model (Sections 2.1 and 2.2), and adds ordered execution guar-
antees to capture stream-based processing semantics (Sections 2.3
and 2.4) and exactly-once processing guarantees for correctly re-
covering from failures (Section 2.5).

2.1 Overview
Our model adopts well-accepted notions of OLTP and stream

processing, and fuses them into one coherent model. We assume
that the reader is already familiar with the traditional notions, and
strive to keep our model description brief and informal for them.

We assume that both OLTP and streaming transactions can share
state and at the same time produce correct results. S-Store supports
three different kinds of state: (i) public tables, (ii) windows, and
(iii) streams. Furthermore, we make a distinction between OLTP
transactions that only access public tables, and streaming transac-
tions that can access all three kinds of state.

For OLTP transactions, we simply adopt the traditional ACID
model that has been well-described in previous literature [39]. A
database consists of unordered, bounded collections (i.e., sets) of
tuples. A transaction represents a finite unit of work (i.e., a fi-
nite sequence of read and write operations) performed over a given
database. In order to maintain integrity of the database in the face
of concurrent transaction executions and failures, each transaction
is executed with ACID guarantees.

Each transaction (OLTP or streaming) has a definition and pos-
sibly many executions (i.e., instances). We assume that all trans-
actions are predefined as stored procedures with input parameters.
They are predefined, because: (i) OLTP applications generally use
a relatively small collection of transactions many times (e.g., Ac-
count Withdrawal), (ii) streaming systems typically require prede-
fined computations. Recall that it is the data that is sent to the query
in streaming systems in contrast to the standard DBMS model of
sending the query to the data. The input parameters for OLTP
transactions are assigned by the application when it explicitly in-
vokes them (“pull”), whereas streaming transactions are invoked as
new data becomes available on their input streams (“push”).

For the purpose of granularity, the programmer determines the
transaction boundaries. Course-grain transactions protect state for
a longer period, but in so doing, other transactions may have to
wait. Fine-grained transactions are in general preferred when they
are safe. Fine-grained transactions make results available to other
transactions earlier. Said another way, in dataflow graphs with
transactions, we can commit stable results when they are ready and
then continue processing as required by the dataflow graph.

2.2 Streaming Transactions & Dataflow Graphs
Data Model. Our stream data model is very similar to many of the
stream processing systems of a decade ago [7, 10, 16]. A stream is
an ordered, unbounded collection of tuples. Tuples have a times-
tamp [10] or, more generally, a batch-id [12, 27] that specifies si-
multaneity and ordering. Tuples with the same batch-id b logically
occur as a group at the same time and, thus, should be processed
as a unit. Any output tuples produced as a result of this processing
are also assigned the same batch-id b (yet they belong to a different
stream). Furthermore, to respect the inherent stream order, batches
of tuples on a given stream should be processed in increasing order
of their batch-id’s. This batch-based model is very much like the
approaches taken by STREAM (group tuples by individual times-
tamps) [10], or more recently, by Spark Streaming (group tuples
into “mini batches” of small time intervals) [40].

In our model, the above-described notion of a “batch” of tu-
ples in a stream forms an important basis for transaction atomicity.
A streaming transaction essentially operates over non-overlapping
“atomic batches” of tuples from its input streams. Thus, an atomic
batch corresponds to a finite, contiguous subsequence of a stream
that must be processed as an indivisible unit. Atomic batches for
input streams must be defined by the application programmer, and
can be based on timestamps (like in [10, 40]) or tuple counts.
Processing Model. Stream processing systems commonly define
computations over streams as dataflow graphs. Early streaming
systems focused on relational-style operators as computations (e.g.,
Filter, Join), whereas current systems support more general user-
defined computations [1, 2, 9, 32, 33, 37, 40]. Following this trend
and consistent with our OLTP model, we assume that computa-
tions over streams are expressed as dataflow graphs of user-defined
stored procedures. More formally, a dataflow graph is a directed
acyclic graph (DAG), in which nodes represent streaming trans-
actions (defined as stored procedures) or nested transactions (de-
scribed in Section 2.4), and edges represent an execution ordering.
If there is an edge between node Ti and node Tj , there is also a
stream that is output for Ti and input for Tj . We say that Ti pre-
cedes Tj and is denoted as Ti ≺ Tj .

Furthermore, given the unbounded nature of streams, all stream
processing systems support windowing as a means to restrict state
and computation for stateful operations (e.g., Join, Aggregate). A
window is a finite, contiguous subsequence of a stream. Windows
can be defined in many different ways [12, 24], but for the pur-
poses of this work, we will restrict our focus to the most common
type: sliding windows. A sliding window is a window which has
a fixed size and a fixed slide, where the slide specifies the distance
between two consecutive windows and must be less than or equal
to the window size (if equal to window size, it has been called a
tumbling window). A sliding window is said to be time-based if its
size and slide are defined in terms of tuple timestamps, and tuple-
based if its size and slide are defined in terms of the number of
tuples. Note that atomic batches and tumbling windows are similar
in definition, but their use is orthogonal: batches are external to a
streaming transaction T and are mainly used to set atomic bound-
aries for T ’s instances, whereas windows are internal to T and are
used to bound computations defined inside T .

Atomic batches of tuples arrive on a stream at the input to a
dataflow graph from push-based data sources. We adopt the data-
driven execution model of streams, where arrival of a new atomic
batch causes a new invocation for all the streaming transactions
that are defined over the corresponding stream. We refer to execu-
tion of each such transaction invocation as a transaction execution
(TE). (In the rest of this paper, we use the terms “transaction” and
“stored procedure” interchangeably to refer to the definition of a



Figure 2: Transaction Executions in a Dataflow Graph

transaction, whereas we use the term “transaction execution” (TE)
to refer to a specific invocation of that definition). A TE essen-
tially corresponds to an atomic batch and its subsequent processing
by a stored procedure. For example, in Figure 2, a dataflow graph
with two stored procedures (i.e., T1 and T2) are defined above the
dashed line, labeled “Definition”, but each of those are executed
twice for two contiguous atomic batches on their respective input
streams (i.e., s1.b1, s1.b2 for T1, and s2.b1, s2.b2 for T2), yielding
a total of four TE’s shown below the dashed line, labeled “Exe-
cution” (i.e., T1,1, T1,2, T2,1, and T2,2). Note, s1.b2 denotes the
second batch on stream s1 and T1,2 denotes the second execution
of T1 on that batch.

Given a dataflow graph, it is also useful to distinguish between
border transactions (those that ingest streams from the outside,
e.g., T1 in Figure 2) and interior transactions (others, e.g., T2 in
Figure 2). Border transactions are instantiated by each newly ar-
riving atomic batch (e.g., s1.b1, s1.b2), and each such execution
may produce a group of output stream tuples labeled with the same
batch-id as the input that produced them (e.g., s2.b1, s2.b2, respec-
tively). These output tuples become the atomic batch for the imme-
diately downstream interior transactions, and so on.

Figure 2 also illustrates the different kinds of state accessed and
shared by different transaction instances (shown below the dashed
line, labeled “State”). T1 takes as input the stream s1 and the win-
dow w1, and produces as output the stream s2, whereas T2 takes
as input the stream s2 and produces as output the stream s3. Thus,
TE’s of T1 (i.e., T1,1 and T1,2) share access to s1, w1, and s2,
whereas TE’s of T2 (i.e., T2,1 and T2,2) do so for s2 and s3. Note,
there are two ways to output final results of a dataflow graph (e.g.,
s3 in Figure 2): (i) write them to a public table, or (ii) push them to
a sink outside the system (e.g., a TCP connection).

In order to ensure a correct execution, shared state accesses must
be properly coordinated. We discuss this issue in more detail next.

2.3 Correct Execution for Dataflow Graphs
A standard OLTP transaction mechanism guarantees the isola-

tion of a transaction’s operations from others’. When a transaction
T commits successfully, all of T ’s writes are installed and made
public. During T ’s execution, all of T ’s writes remain private.

S-Store adopts such standard transaction semantics as a basic
building block for its streaming transactions (thus ensuring ACID
guarantees in this way); however, the ordering of stored proce-
dures in the dataflow graph as well as the inherent order in stream-
ing data puts additional constraints on allowable transaction exe-
cution orders. As an example, consider again the dataflow graph
shown in Figure 2. The four TE’s illustrated in this example can
be ordered in one of two possible ways: [T1,1, T2,1, T1,2, T2,2] or
[T1,1, T1,2, T2,1, T2,2]. Any other orderings would not lead to a

correct execution. This is due to the precedence relation between
T1 and T2 in the graph as well as the ordering of the atomic batches
on their input streams. This requirement is in contrast to most
OLTP transaction processors which would accept any serializable
schedule (e.g., one that is equivalent to any of the 4! possible serial
execution schedules if these were 4 independent transactions).

Note that we make no ACID claims for the dataflow graph as
a whole. The result of running a dataflow graph is to create an
ordered execution of ACID transactions.

Furthermore, in streaming applications, the state of a window
must be shared differently than other stored state. To understand
this, consider again the simple dataflow graph shown in Figure 2.
Let us assume for simplicity that the transaction input batch size
for T1 is 1 tuple. Further, suppose that T1 constructs a window of
size 2 that slides by 1 tuple, i.e., two consecutive windows in T1

overlap by 1 tuple. This means that window state will carry over
from T1,1 to T1,2. For correct behavior, this window state must
not be publicly shared with other transaction executions. That is,
the state of a window can be shared among consecutive executions
of a given transaction, but should not be made public beyond that.
Returning to Figure 2, when T1,1 commits, the window in T1,1 will
slide by one and will then be available to T1,2, but not to T2,1.
This approach to window visibility is necessary, since it is this way
of sharing window state that is the basis for continuous operation.
Windows evolve and, in some sense, “belong” to a particular stored
procedure. Thus, a window’s visibility should be restricted to the
transaction executions of its “owning” stored procedure.

We will now describe what constitutes a correct execution for a
dataflow graph of streaming transactions more formally. Consider a
dataflow graph D of n streaming transactions Ti, 1 ≤ i ≤ n. D is a
directed acyclic graph G = (V,E), where V = {T1, . . . , Tn} and
E ⊆ V × V , where (Ti, Tj) ∈ E means that Ti must precede Tj

(denoted as Ti ≺ Tj). Being a DAG, G has at least one topological
ordering. A topological ordering of G is an ordering of its nodes
Ti ∈ V such that for every edge (Ti, Tj) ∈ E we have i < j. Each
topological ordering of G is essentially some permutation of V .

Without loss of generality: (i) Let us focus on one specific topo-
logical ordering of G and call it O; (ii) For ease of notation, let us
simply assume that O corresponds to the identity permutation such
that it represents: T1 ≺ T2 ≺ .. ≺ Tn.
Ti represents a transaction definition Ti(si, wi, pi), where si de-

notes all stream inputs of Ti (at least one), wi denotes all win-
dow inputs of Ti (optional), pi denotes all table partition inputs of
Ti (optional). Similarly, Ti,j represents the j th transaction execu-
tion of Ti as Ti,j(si.bj , wi, pi), where si.bj denotes the j th atomic
batches of all streams in si.

A dataflow graph D is executed in rounds of atomic batches
1 ≤ r < ∞, such that for any round r, atomic batch r from all
streaming inputs into D generates a sequence of transaction ex-
ecutions Ti,r(si.br, wi, pi) for each Ti. Note that this execution
generates an unbounded schedule. However, as of a specific round
r = R, we generate a bounded schedule that consists of all R ∗ n
transaction executions: 1 ≤ r ≤ R, 1 ≤ i ≤ n, Ti,r(si.br, wi, pi).

In the traditional ACID model of databases, any permutation of
these R ∗ n transaction executions would be considered to be a
valid/correct, serial schedule. In our model, we additionally have:

1. Dataflow graph order constraint: Consider the topological
ordering O of G as we defined above. Then for any given
execution round r, it must hold that:
T1,r(s1.br, w1, p1) ≺ . . . ≺ Tn,r(sn.br, wn, pn)

2. Stream order constraint: For any given transaction Ti, as of
any execution round r, the following must hold:
Ti,1(si.b1, wi, pi) ≺ . . . ≺ Ti,r(si.br, wi, pi)



(1) follows from the definition of a dataflow graph which speci-
fies a precedence relation on its nodes, whereas (2) is to ensure that
atomic batches of a given stream are processed in order.

Any bounded schedule of D that meets the above two ordering
constraints is a correct schedule. If G has multiple topological or-
derings, then the dataflow graph order constraint must be relaxed to
accept any of those orderings for any given execution round of D.

2.4 Correct Execution for Hybrid Workloads
S-Store’s computational model allows OLTP and streaming trans-

actions to co-exist as part of a common transaction execution sched-
ule. This is particularly interesting if those transactions access
shared public tables. Given our formal description of a correct
schedule for a dataflow graph D that consists of streaming trans-
actions, any OLTP transaction execution Ti,j(pi) (defined on one
or more public table partitions pi) is allowed to interleave anywhere
in such a schedule. The resulting schedule would still be correct.

We have also extended our transaction model to include nested
transactions. Fundamentally, this allows the application program-
mer to build higher-level transactions out of smaller ones, giving
her the ability to create coarser isolation units among stored pro-
cedures, as illustrated in Figure 3. In this example, two streaming
transactions, T1 and T2, in a dataflow graph access a shared table
partition p. T1 writes to the table and T2 reads from it. If another
OLTP transaction also writes to p in a way to interleave between
T1 and T2, then T2 may get unexpected results. Creating a nested
transaction with T1 and T2 as its children will isolate the behavior
of T1 and T2 as a group from other transactions (i.e., other OLTP
or streaming). Note that nested transactions also isolate multiple
instances of a given streaming dataflow graph (or subgraph) from
one another. We describe such a scenario in Section 4.1.1.

More generally, an S-Store nested transaction consists of two or
more stored procedures with a partial order defined among them
[36]. The stored procedures within a nested transaction must ex-
ecute in a way that is consistent with that partial order. A nested
transaction will commit, if and only if all of its stored procedures
commit. If one or more stored procedures abort, the whole nested
transaction will abort.

Nested transactions fit into our formal model of streaming trans-
actions in a rather straight-forward way. More specifically, any
streaming transaction Ti in dataflow graph D can be defined as
a nested transaction that consists of children Ti1, . . . , Tim. In this
case, Ti1, . . . , Tim must obey the partial order defined for Ti for
every execution round r, 1 ≤ r < ∞. This means that no other
streaming or OLTP transaction instance will be allowed to inter-
leave with Ti1, . . . , Tim for any given execution round.

2.5 Fault Tolerance
Like any ACID-compliant database, in the face of failure, S-

Store must recover all of its state (including streams, windows,
and public tables) such that any committed transactions (includ-
ing OLTP and streaming) remain stable, and, at the same time, any
uncommitted transactions are not allowed to have any effect on this
state. A TE that had started but had not yet committed should be un-
done, and it should be reinvoked with the proper input parameters
once the system is stable again. For a streaming TE, the invocation
should also take proper stream input from its predecessor.

In addition to ACID, S-Store strives to provide exactly-once pro-
cessing guarantees for all streams in its database. This means that
each atomic batch s.bj on a given stream s that is an input to a
streaming transaction Ti is processed exactly once by Ti. Note that
such a TE Ti,j , once it commits, will likely modify the database
state (streams, windows, or public tables). Thus, even if a failure

happens and some TE’s are undone / redone during recovery, the
database state must be “equivalent” to one that is as if s were pro-
cessed exactly once by Ti.

For example, consider the streaming transaction T1(s1, w1) in
Figure 2. If a failure happens while TE T1,1(s1.b1, w1) is still exe-
cuting, then: (i) T1,1 should be undone, i.e., any modifications that
it may have done on s1, w1, and s2 should be undone; (ii) T1,1

should be reinvoked for the atomic batch s1.b1. Similarly, if a fail-
ure happens after TE T1,1(s1.b1, w1) has already committed, then
all of its modifications on s1, w1, and s2 should be retained in the
database. In both of these failure scenarios, the recovery mecha-
nism should guarantee that s1.b1 is processed exactly once by T1

and the database state will reflect the effects of this execution.
Note that a streaming TE may have an external side effect other

than modifying the database state (e.g., delivering an output tuple
to a sink that is external to S-Store, as shown for s3 at the top part of
Figure 2). Such a side effect may get executed multiple times due
to failures. Thus, our exactly-once processing guarantee applies
only to state that is internal to S-Store (e.g., if s3 were alternatively
stored in an S-Store table as shown at the bottom part of Figure
2). This is similar to other exactly-once processing systems such as
Spark Streaming [40].

If the dataflow graph definition allows multiple TE orderings
or if the transactions within a dataflow graph contain any non-
deterministic operations (e.g., use of a random number generator),
we provide an additional recovery option that we call weak recov-
ery. Weak recovery will produce a correct result in the sense that
it will produce results that could have been produced if the failure
had not occurred, but not necessarily the one that was in fact be-
ing produced. In other words, each atomic batch of each stream in
the database will still be processed exactly once and the TE’s will
be ordered correctly (as described in Sections 2.3 and 2.4), but the
final database state might look different than that of the original ex-
ecution before the failure. This is because the new execution might
follow a different (but valid) TE ordering, or a non-deterministic
TE might behave differently every time it is invoked (even with the
same input parameters and database state).

3. ARCHITECTURE & IMPLEMENTATION
We chose to build S-Store on top of the H-Store main-memory

OLTP system [29]. This allows us to inherit H-Store’s support
for high-throughput transaction processing, thereby eliminating the
need to replicate this complex functionality. We also receive associ-
ated functionality that will be important for streaming OLTP appli-
cations, including indexing, main-memory operation, and support
for user-defined transactions.

In this section, we briefly describe the H-Store architecture and
the changes required to incorporate S-Store’s hybrid model de-
scribed in the previous section. Nevertheless, we believe that the
architectural features that we have added to H-Store are conceptu-
ally applicable to any main-memory OLTP system.

3.1 H-Store Overview
H-Store is an open-source, main-memory OLTP engine that was

developed at Brown and MIT [29], and formed the basis for the
design of the VoltDB NewSQL database system [6].

All transactions in H-Store must be predefined as stored proce-
dures with input parameters. The stored procedure code is a mix-
ture of SQL and Java. Transaction executions (TEs) are instantiated
by binding input parameters of a stored procedure to real values
and running it. In general, a given stored procedure definition will,
over time, generate many TEs. TEs are submitted to H-Store, and
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the H-Store scheduler executes them in whatever order is required
to provide ACID guarantees.

H-Store follows a typical distributed DBMS architecture in which
a client initiates the transaction in a layer (in H-Store, called the
partition engine (PE)) that is responsible for managing transac-
tion distribution, scheduling, coordination, and recovery. The PE
manages the use of another layer (in H-Store, called the execu-
tion engine (EE)) that is responsible for the local execution of SQL
queries. This layering is very much like the transaction manager
/ transaction coordinator division of labor in a standard distributed
DBMS architecture.

A client program connects to the PE via a stored procedure ex-
ecution request. If the stored procedure requires SQL processing,
then the EE is invoked with these sub-requests.

An H-Store database is partitioned across multiple sites [34],
where a site corresponds to a CPU core. The available DRAM for a
node is divided equally among the partitions, and each stores a hor-
izontal slice of the database. A transaction is executed on the sites
that hold the data that it needs. If the data is partitioned carefully,
most transactions will only need data from a single site. Single-
sited transactions are run serially on that site, thereby eliminating
the need for fine-grained locks and latches.

H-Store provides recovery through a checkpointing and command-
logging mechanism [31]. Periodically, the system creates a per-
sistent snapshot or checkpoint of the current committed state of
the database. Furthermore, every time H-Store commits a transac-
tion, it writes a command-log record containing the name of that
stored procedure along with its input parameters. This command-
log record must be made persistent before its transaction can com-
mit. In order to minimize interactions with the slow persistent store,
H-Store offers a group-commit mechanism.

On recovery, the system’s state is restored to the latest snap-
shot, and the command-log is replayed. That is, each command-log
record causes the system to re-execute the same stored procedures
with the same arguments in the same order that it did before the
failure. Note that an undo-log is unnecessary, as neither the pre-
vious checkpoint nor the command-log will contain uncommitted
changes.

3.2 S-Store Extensions
The high-level architecture of S-Store, directly adapted from H-

Store, is shown in Figure 4. S-Store makes a number of exten-
sions to H-Store to enable stream processing in the engine (shown
in boldface in Figure 4). These include management of: (i) inputs

from streaming clients and dataflow graphs of stored procedures at
the PE layer, (ii) triggers at both the PE and the EE layers, (iii)
stream- and window-based queries at the EE layer, (iv) in-memory
stream and window state.

3.2.1 Streams
S-Store implements a stream as a time-varying H-Store table.

Using this approach, stream state is persistent and recoverable. Since
tables are unordered, the order of tuples in a stream is captured by
timestamps. An atomic batch of tuples is appended to the stream
table as it is placed on the corresponding stream, and conversely,
an atomic batch of tuples is removed from the stream table as it is
consumed by a downstream transaction in the dataflow. The pres-
ence of an atomic batch of tuples within a stream can activate either
a SQL plan fragment or a downstream streaming transaction, de-
pending on what “triggers” are attached to the stream (described in
Section 3.2.2). In case of the latter, the current stream table serves
as input for the corresponding downstream streaming transaction.

3.2.2 Triggers
Triggers enable push-based, data-driven processing needed to

implement S-Store dataflow graphs. A trigger is associated with
a stream table or a window table. When new tuples are appended
to such a table, downstream processing will be automatically ac-
tivated. The alternative to triggers would be polling for newly-
arriving tuples, which would reduce throughput.

There are two types of triggers in S-Store to reflect the two-layer
design of H-Store and of many other distributed database systems:

Partition engine (PE) triggers can only be attached to stream ta-
bles, and are used to activate downstream stored procedures upon
the insertion and commit of a new atomic batch of tuples on the cor-
responding streams. As the name implies, PE triggers exist to cre-
ate a push-based dataflow within the PE by eliminating the need to
return back to the client to activate downstream stored procedures.
In Figure 4, the horizontal arrows between stored procedures inside
the PE layer denote PE triggers.

Execution Engine (EE) triggers can be attached to stream or win-
dow tables, and are used to activate SQL queries within the EE.
These triggers occur immediately upon the insertion of an atomic
batch of tuples in the case of a stream, and upon the insertion of an
atomic batch of tuples that also cause a window to slide in the case
of a window. The SQL queries are executed within the same trans-
action instance as the batch insertion which triggered them, and



can also activate further downstream EE triggers. EE triggers are
designed to eliminate unnecessary communication between the EE
and PE layers, for example when the execution of downstream pro-
cessing is conditional. In Figure 4, the horizontal arrows between
SQL queries inside the EE layer denote EE triggers.

3.2.3 Windows
Windows are also implemented as time-varying H-Store tables.

A window is processed only when a new complete window state
is available. For a sliding window, a new full window becomes
available every time that window has one slide-worth of new tuples.
Therefore, when new tuples are inserted into a window, they are
flagged as “staged” until slide conditions are met. Staged tuples are
not visible to any queries on the window, but are maintained within
the window. Upon sliding, the oldest tuples within the window are
removed, and the staged tuples are marked as active in their place.
All window manipulation is done at the EE level, and output can be
activated using an EE trigger.

Due to the invisible “staging” state of a window table as well
as the transaction isolation rules discussed earlier in Section 2.3,
special scoping rules are enforced for window state. A window
table must not be accessed in general by TE’s other than those of the
stored procedure that defined it. In fact, a window table must only
be visible to consecutive TE’s of the stored procedure that contains
it. As a consequence, one is not allowed to define PE triggers on
window state, but only EE triggers. In other words, windows must
be contained within the TE’s of single stored procedures and must
not be shared across other stored procedures in the dataflow graph.

S-Store provides automatic garbage collection mechanisms for
tuples that expire from stream or window state, after any triggers
associated with them have all been fired and executed.

It should be noted that some optimizations, such as incremental
window processing, have been left as future work.

3.2.4 Streaming Scheduler
Being an OLTP database that implements the traditional ACID

model, the H-Store scheduler can execute transaction requests in
any order. On a single H-Store partition, transactions run in a serial
fashion by design [29]. H-Store serves transaction requests from
its clients in a FIFO manner by default.

As we discussed in Section 2.3, streaming transactions and data-
flow graphs require TE’s for dependent stored procedures to be
scheduled in an order that is consistent with the dataflow graph (i.e.,
not necessarily FIFO). This is, of course, true for other streaming
schedulers, but here we must obey the rules defining correct sched-
ules as stated earlier in Section 2.3. Additionally, as discussed in
Section 2.4, the application can specify (via defining nested trans-
actions) additional isolation constraints, especially when shared ta-
ble state among streaming transactions is involved. The simplest
solution is to require the TE’s in a dataflow graph for a given input
batch to always be executed in an order consistent with a specific
topological ordering of that dataflow graph.

Although our ordering rules described earlier would allow trans-
action schedules that are ”equivalent” to any topological ordering
of the dataflow graph, our current scheduler implementation admits
only one of them. We have found this approach to be practical in
that it is amenable to a low-overhead implementation in H-Store
and good enough to support all the S-Store use cases and bench-
marks that we have so far studied (see Section 4). As we consider
scaling to larger collections of workloads and nodes going forward,
issues of fairness and locality may require more sophisticated ap-
proaches, such as flow-based scheduling [26].

3.2.5 Recovery Mechanisms
As described in Section 2.5, S-Store provides two different re-

covery options: (i) strong recovery, which is guaranteed to produce
exactly the same state as was present before the failure (note that
this guarantee is feasible only if the workload does not contain any
non-determinism), and (ii) weak recovery, which will produce a le-
gal state that could have existed, but is not necessarily the exact
state lost. Both of these options leverage periodic checkpointing
and command-logging mechanisms of H-Store. However, they dif-
fer in terms of which transactions are recorded in the command-log
during normal operation and how they are replayed during crash
recovery.

Strong Recovery. S-Store’s strong recovery is very similar to H-
Store’s recovery mechanism. All committed transactions (both OLTP
and streaming) are recorded in the command-log along with their
input arguments. When a failure occurs, the system replays the
command-log starting from the latest snapshot. The log is replayed
in the order in which the transactions appear, which is the same as
the order they were originally committed. This will guarantee the
reads-from and the writes-to relationships between the transactions
are strictly maintained.

There is one variation on H-Store’s recovery, however. Before
the log replay, we must first disable all PE triggers so that the ex-
ecution of a stored procedure does not redundantly trigger the ex-
ecution of its successor(s) in the dataflow graph. Because every
transaction is logged in strong recovery, failing to do this would
create duplicate invocations, and thus potentially incorrect results.
Once triggers are disabled, the snapshot is applied, and recovery
from the command-log can begin.

When recovery is complete, we turn PE triggers back on. At that
point, we also check if there are any stream tables that contain tu-
ples in them. For such streams, PE triggers will be fired to activate
their respective downstream transactions. Once those transactions
have been queued, then the system can resume normal operation.

Weak Recovery. In weak recovery, the command-log need not
record all stored procedure invocations, but only the ones that in-
gest streams from the outside (i.e., border transactions). We then
use a technique similar to upstream backup [25] to re-invoke the
other previously committed stored procedures (i.e., interior trans-
actions). In upstream backup, the data at the inputs to a dataflow
graph are cached so that in the event of a failure, the system can re-
play them in the same way that it did on first receiving them in the
live system. Because the streaming stored procedures in an S-Store
dataflow have a well-defined ordering, the replay will necessarily
create a correct execution schedule. While transactions may not
be scheduled in the exact order that took place on the original run,
some legal transaction order is ensured.

When recovering using weak recovery, we must first apply the
snapshot, as usual. However, before applying the command-log,
S-Store must first check existing streams for data recovered by the
snapshot, and fire any PE triggers associated with those streams.
This ensures that interior transactions that were run post-snapshot
but not logged are re-executed. Once these triggers have been fired,
S-Store can begin replaying the log. Unlike for strong recovery, we
do not need to turn off PE triggers during weak recovery. In fact,
we rely on PE triggers for the recovery of all interior transactions,
as these are not recorded in the command-log. Results are returned
through committed tables.

Weak recovery is a light-weight alternative to strong recovery,
since it need not log all committed transactions. Section 4.2.3 pro-
vides an experimental comparison of our strong and weak recovery
mechanisms.



Figure 5: Leaderboard Maintenance Benchmark

4. EXPERIMENTS
In this section, we present the results of our experimental study

that evaluates S-Store with respect to existing alternatives in OLTP
and stream processing. First, we demonstrate the benefits of inte-
grating state management with push-based processing in Section
4.1. Specifically, we compare S-Store to H-Store, Esper, and Storm
in terms of overall throughput on a transactional stream processing
workload. Then, Section 4.2 further explores a number of micro-
benchmarks that focus on evaluating specific architectural features
of S-Store in comparison to its base system H-Store (i.e., EE trig-
gers, PE triggers, and recovery modes).

To properly evaluate streaming workloads, we record throughput
in terms of “input batches per second”. This number represents the
number of input batches that are processed to completion, regard-
less of the number of transactions executed. In order to simplify
comparison to other systems, these experiments set the batch size
to be a single tuple. For example, if any system processes 1,000
tuples / sec, we consider it to be processing 1,000 batches / sec.

All experiments were run on a cluster of machines using the
Intel R© Xeon R© E7-4830 processors running at 2.13 GHz. Each
machine contains a total of 64 cores and 264 GB of memory. Be-
cause we focus on single-node S-Store deployments in this paper
and due to the partitioned architecture of S-Store, effectively only a
single core is used for data access. In order to create data isolation
for an apples-to-apples comparison, we limit data access to a single
core on all featured systems. The experiments were run using a sin-
gle non-blocking client which asynchronously sends requests to the
system. Command-logging was enabled unless otherwise stated.

4.1 State-of-the-Art Comparison
In order to provide the best comparison between S-Store and

state-of-the-art systems, we chose to implement a Leaderboard Main-
tenance benchmark that exercises all of the architectural additions
of S-Store described in Section 3. We measure S-Store’s perfor-
mance against a main-memory OLTP system (H-Store [29]), a tra-
ditional single-node CEP engine (Esper [3]), and a modern dis-
tributed streaming system (Storm [37]).

4.1.1 Leaderboard Maintenance Benchmark
Consider a TV game-show in which viewers vote for their fa-

vorite candidate. Leaderboards are periodically updated with the
number of votes each candidate has received.

Each viewer may cast a single vote via text message. Suppose
the candidate with the fewest votes will be removed from the run-
ning every 20,000 votes, as it has become clear that s/he is the least
popular. When this candidate is removed, votes submitted for him
or her will be deleted, effectively returning the votes to the people
who cast them. Those votes may then be re-submitted for any of the

System ACID Order Exactly-
Once

Max Tput
(batches/sec)

H-Store
(async) X × × 5300

H-Store
(sync) X X × 210

Esper+
VoltDB X X × 570

Storm+
VoltDB X X X 600

S-Store X X X 2200

Table 1: Guarantees vs Max Tput (Leaderboard Maintenance)

remaining candidates. This continues until a single winner is de-
clared. During the course of the voting, each incoming vote needs
to be validated and recorded. Furthermore, several leaderboards
are maintained: one representing the top-3 candidates, another for
the bottom-3 candidates, and a third one for the top-3 trending
candidates of the last 100 votes. With each incoming vote, these
leaderboards are updated with new statistics regarding the number
of votes each candidate has received.

As shown in Figure 5, the dataflow graph contains three separate
stored procedures: one to validate and insert a new vote, a second
to maintain the leaderboard, and a third to delete a candidate if
necessary. In order to ensure the correctness of the result in the
presence of shared tables, as well as to maintain consistency of the
tables across the dataflow graph, these three stored procedures must
execute in sequence for each new vote.

4.1.2 OLTP Systems (H-Store)
As discussed at the beginning of Section 2, S-Store provides

three primary guarantees: ACID, ordered execution, and exactly-
once processing. When evaluating S-Store against an OLTP system
(H-Store), it is important to consider which of these guarantees are
being provided.

By default, H-Store provides only one of the three processing
guarantees of S-Store: ACID. H-Store has no ordering guarantees,
as it has no concept of a dataflow graph. It can instead choose any
serializable transaction schedule (Section 3.1). In fact, we have pre-
viously shown that, in a workload in which multiple stored proce-
dures within a dataflow share state like the one in Figure 5, H-Store
may produce incorrect results [14]. H-Store also does not guaran-
tee that a dataflow will be fully processed exactly once in the event
of a system failure (again due to the lack of concept of a dataflow
graph).

Because ordering guarantees are not considered, H-Store can
asynchronously queue transactions for the engine to process. Thus,
H-Store can send a transaction request and immediately send an-
other without waiting for the response. The queue provides the
system with a continuous supply of work, meaning H-Store is al-
most constantly doing transactional work. As a result, H-Store is
able to process an impressive 5,300 input batches per second, as
can be seen in Table 1.

By comparison, S-Store is able to achieve 2,200 input batches
per second, while providing all three correctness guarantees. The
primary performance difference lies within the ordered execution
guarantee. To provide this, S-Store’s scheduler must determine the
proper order in which to run the transactions in its queue (discussed
in Section 3.2.4). This scheduling does reduce the number of trans-
actions per second that S-Store is able to process, but it is necessary
to ensure correct results.



It is possible to execute the Leaderboard Maintenance bench-
mark on H-Store in a way that provides ordering guarantees. This is
accomplished by designing a pseudo-“dataflow-graph” within the
client. The parameters of a downstream procedure depend on the
result from an upstream procedure, and transaction ordering must
be ensured by the client. As a result, all procedures are forced to be
invoked synchronously, meaning that a response must be received
before the next request can be made.

This method ensures that the end results of the benchmark are
correct, but performance suffers severely in the process. H-Store
is only able to process 210 input batches per second when order-
ing is enforced by the client (see Table 1). Because all transac-
tion calls are synchronous, H-Store’s transaction queue never holds
more than one transaction at a time. As a result, the client and the
PE of H-Store must constantly wait for each other, severely hin-
dering performance. S-Store, on the other hand, provides all three
correctness guarantees while maintaining reasonable throughput.

4.1.3 Streaming Systems (Esper and Storm)
To compete with pure streaming systems, S-Store’s performance

must be comparable to both first-generation, single-node CEP en-
gines as well as second-generation, distributed real-time streaming
systems. We chose Esper and Storm as representative systems for
their respective categories.

As further discussed in Section 5, neither Esper nor Storm are
transactional. In order to provide comparable (though not compre-
hensive) guarantees to S-Store, only serialized tuple processing was
allowed. All of Esper’s default delivery ordering guarantees remain
activated, meaning each tuple must run to completion before the
next tuple may begin processing. For the Storm implementation,
we opted to use Trident [5], an extension of Storm that supports
stateful stream processing and exactly-once semantics. Data dura-
bility in both systems is provided by command-logging each of the
three atomic processing units in the dataflow graph.

On stateless, pure streaming workloads that do not require trans-
actional guarantees, both Esper and Storm would easily outperform
S-Store. However, shared state management is key to many work-
loads, including our Leaderboard Maintenance benchmark. Like
many stream processing systems, both Esper and Storm rely on ex-
ternal data storage for durable, shared state.

We added VoltDB[6], a main-memory, transactional database, as
the backend for both Esper and Storm. VoltDB is an optimized,
commercial version of H-Store, making the comparison with S-
Store fair. Esper and Storm serve as the driving push-based en-
gines, choosing when to access state based on the results received
from the database. To maximize VoltDB’s potential and batch re-
quests from Esper / Storm to the database, we compile the three op-
erations in Leaderboard Maintenance as VoltDB stored procedures.
Each streaming system sends stored procedure requests via JDBC.
Command-logging was unavailable in the open-source version of
VoltDB, so asynchronous command logging was implemented in
Esper and Storm.

After adding VoltDB, both Esper and Storm with Trident pro-
vide comparable guarantees to S-Store, outlined in Table 1. Esper
(+VoltDB) provides two of the three processing guarantees of S-
Store (ACID and ordered execution guarantees), but has no support
for exactly-once semantics. Storm with Trident (+VoltDB) pro-
vides all three correctness guarantees.

As shown in Table 1, both Esper and Storm with Trident achieve
roughly 600 batches per second, with data access being the signif-
icant bottleneck. At all times, either Esper or Storm is waiting for
VoltDB, or vice-versa. Because tuples must be processed sequen-
tially, only a single transaction request can be sent to VoltDB at a

(a) EE Trigger Micro-Benchmark

(b) EE Trigger Result

Figure 6: Execution Engine Triggers

time, and the database must at a minimum wait for a full round-trip
to and from the streaming system before it can process more work.
Meanwhile, Esper and Storm must wait for VoltDB to process its
transaction request before evaluating the response and continuing
to process the dataflow graph.

By contrast, S-Store processes 2,200 batches per second. S-Store
is able to handle multiple asynchronous transaction requests from
the client and still preserve the tuple processing order. This is be-
cause all of the transaction ordering is handled directly by the S-
Store partition engine. By combining the push-based semantics and
fully-integrated state management, S-Store avoids the costly block-
ing communication between the streaming system and the database.

4.2 Micro-Benchmarks
A number of micro-experiments were performed to evaluate the

optimizations achieved by S-Store over its predecessor, H-Store,
in the presence of transactional stream processing workloads. For
the experiments in Sections 4.2.1 and 4.2.2, command-logging was
disabled to emphasize the feature being measured.

4.2.1 Execution Engine Triggers
In this experiment, we evaluate the benefit of S-Store’s EE trig-

gers. The micro-benchmark contains a single stored procedure that
consists of a sequence of SQL statements (Figure 6(a)). In S-Store,
these SQL statements can be activated using EE triggers such that
all execution takes place inside the EE layer. H-Store, on the other
hand, must submit the set of SQL statements (an insert and a delete)
for each query as a separate execution batch from PE to EE. Figure
6(a) illustrates the case for 3 streams and 3 queries. S-Store’s EE
triggers enable it to trade off trigger execution cost for a reduction
in the number of PE-to-EE round-trips (e.g., 2 triggers instead of 2
additional round-trips). Note also that the DELETE statements are
not needed in S-Store, since garbage collection on streams is done
automatically as part of our EE trigger implementation.

Figure 6(b) shows how maximum throughput varies with the
number of EE triggers. S-Store outperforms H-Store in all cases,
and its relative performance further increases with the number of



(a) PE Trigger Micro-Benchmark
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Figure 7: Partition Engine Triggers

EE triggers, reaching up to a factor of 2.5x for 9 triggers. This
trend continues as more EE triggers are added.

4.2.2 Partition Engine Triggers
This experiment compares the performance of S-Store’s PE trig-

gers to an equivalent implementation in H-Store, which has no such
trigger support in its PE. As illustrated in Figure 7(a), the micro-
benchmark consists of a dataflow graph with a number of iden-
tical stored procedures (SPs). Each SP removes tuples from its
input stream, and then inserts these tuples into its output stream.
We assume that the dataflow graph must execute in exact sequen-
tial order. In H-Store, the scheduling request of a new transaction
must come from the client, and because the dataflow order of these
transactions must be maintained, transactions cannot be submitted
asynchronously. Serializing transaction requests severely limits H-
Store’s performance, as the engine will be unable to perform mean-
ingful work while it waits for a client request (as discussed in Sec-
tion 4.1.2). In S-Store, a PE trigger can activate the next transac-
tion directly within the PE and can prioritize these triggered trans-
actions ahead of the current scheduling queue using its streaming
scheduler. Thus, S-Store is able to maintain dataflow order while
both avoiding blockage of transaction executions and reducing the
number of round-trips to the client layer.

Figure 7(b) shows how throughput (plotted in log-scale) changes
with increasing dataflow graph size (shown as number of PE trig-
gers for S-Store). H-Store’s throughput tapers due to the PE’s need
to wait for the client to determine which transaction to schedule
next. S-Store is able to process roughly an order of magnitude more
input batches per second thanks to its PE triggers. Our experiments
show that this benefit is independent of the number of triggers.

4.2.3 Recovery Mechanisms
As described earlier in Sections 2.5 and 3.2.5, S-Store provides

two methods of recovery. Strong recovery requires every commit-
ted transaction to be written to the command-log. Weak recovery,
on the other hand, is a version of upstream backup in which only
committed border transactions are logged, and PE triggers allow in-
terior transactions to be automatically activated during log replay.
We now investigate the performance differences between these two
methods, both during normal operation as well as recovery.

For the command-logging experiment, we use the same micro-
benchmark presented in Section 4.2.2 (Figure 7(a)), using a dataflow
with a variable number of SPs. Ordinarily in H-Store, higher through-
put is achieved during logging by group-committing transactions,
writing their log records to disk in batches. In S-Store, we have
found that for trigger-heavy workloads, weak recovery can accom-
plish a similar run-time effect to the use of group commit. As
shown in Figure 8(a), without group commit, logging quickly be-
comes a bottleneck in the strong recovery case. Each committed
transaction is logged, so the throughput quickly degrades as the
number of transactions in the dataflow graph increases. By con-
trast, weak recovery logs only the committed border transactions,
allowing up to 4x the throughput as it writes a smaller fraction of
log records to disk.

For the recovery experiment, we ran 5,000 input batches through
the same PE micro-benchmark, recording logs for both weak and
strong recovery. We then measured the amount of time it took S-
Store to recover from scratch using each command-log.

As shown in Figure 8(b), weak recovery not only achieves better
throughput during normal operation, but it also provides lower re-
covery time. Typically during recovery, the log is read by the client
and transactions are submitted sequentially to the engine. Each
transaction must be confirmed as committed before the next can be
sent. Because weak recovery activates interior transactions within
the engine, the transactions can be confirmed without a round-trip
to the client. As a result, recovery time stays roughly constant for
weak recovery, even for dataflow graphs with larger numbers of
stored procedures. For strong recovery, recovery time increases
linearly with the size of the dataflow graph.

As previously stated, we expect the need for recovery to be rare,
and thus prioritize throughput at run time over total recovery time.
However, in real-time systems in which recovery time can be cru-
cial, weak recovery can provide a significant performance boost
while also improving run-time throughput.

5. RELATED WORK
In the early 2000’s, there was a lot of interest in the database

community for stream processing. The main goal of this work was
to process continuous queries with low latency as data streamed
into the system. This was largely inspired by the emergence of
sensor-based applications. Many academic prototypes (Aurora /
Borealis [7, 8], STREAM [10], TelegraphCQ [16], NiagraCQ [17])
were built, and several commercial products were spawned as a re-
sult of this work (e.g., TIBCO StreamBase, CISCO Truviso, SAP
Coral8 / ESP, IBM InfoSphere Streams, Microsoft StreamInsight,
Oracle CEP, Esper). With the exception of STREAM and Coral8,
these systems did not support an explicit notion of transactions.
STREAM did not directly claim to have transactions, but its execu-
tion model was based on logical timestamps which could be inter-
preted as transaction IDs. Batches of tuples with the same times-
tamp were executed atomically. While this could be used to pro-
vide isolation, recovery was not discussed. Furthermore, modeling
transactions as the execution of an entire query graph did not allow
finer-grained transaction definitions. Similarly, Coral8 provided so-
called ”atomic bundles” as a configurable isolation/recovery unit
embedded in its execution model, but did not provide any trans-
actional guarantees beyond ”at least once” for processing events.
Furthermore, none of these early systems considered integrating
stream processing with traditional OLTP-style query processing.

Fault tolerance issues have been investigated as stream process-
ing systems have been moved into distributed settings [8, 16]. A
few fundamental models and algorithms have been established by
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this work [11, 25, 35], including the upstream backup technique
that we leverage in our weak recovery mechanism [25].

There have also been several efforts in addressing specific trans-
actional issues that arise in stream processing settings. For exam-
ple, Golab et al. have studied the concurrency control problem
that arises when a sliding window is advanced (write) while it is
being accessed by a query (read) [22]. This work proposes sub-
windows to be used as atomic access units and two new isolation
levels that are stronger than conflict serializability. Such a problem
never arises in S-Store, since window state is accessed by a single
TE at a time (and never by TEs of different SPs). As another ex-
ample, Wang et al. have considered concurrency issues that arise
when adding active rule support to CEP engines in order to monitor
and react to streaming outputs [38]. In this case, the rules may re-
quire accessing state shared with other queries or rules. This work
defines a stream transaction as a sequence of system state changes
that are triggered by a single input event, and proposes a timestamp-
based notion of correctness enforced through appropriate schedul-
ing algorithms. S-Store investigates transactional stream process-
ing in a more general context than active CEP engines.

Botan et al.’s work was the first to recognize the need for an
explicit transaction model to support queries across both stream-
ing and stored data sources [13]. This work proposed to extend
the traditional page model [39] to include streams of events (as
time-varying relations) and continuous queries (as a series of one-
time queries activated by event arrivals). As a result, each one-
time query execution corresponds to a sequence of read/write op-
erations, and operations from one or more such sequences can be
grouped into transaction units based on the application semantics.
Transactions must then be executed in a way to ensure conflict se-
rializability and event arrival ordering. Thus, this work focused on
the correct ordering of individual read/write operations for a single
continuous query, and not so much on transaction-level ordering
for complex dataflow graphs like we do.

Recently, a new breed of stream processors has emerged. Unlike
the majority of the earlier-generation systems, these do not adopt a
select-project-join operator environment. Instead, they expect the
user to supply their own operators (UDF’s), and the system con-
trols their execution in a scalable fashion over a cluster of compute
nodes. Typically, these systems provide fault tolerance and recov-
erability, but do not support fully-ACID transactions. Essentially,
they all aim at providing a MapReduce-like framework for real-
time computations over streaming data. Representatives include
Storm [37], Spark Streaming [40], Samza [2], Naiad [32], Flink
[1], MillWheel [9], and S4 [33].

Storm provides two types of semantic guarantees: at-least-once
and at-most-once. For at-least-once, each tuple is assigned a unique
message-id and its lineage is tracked. For each output tuple t that
is successfully delivered by a topology, a backflow mechanism is
used to acknowledge the tasks that contributed to t with the help

of a dedicated acker bolt. The data source must hold the tuple un-
til a positive ack is received and the tuple can be removed (sim-
ilar to upstream backup [25]). If an ack is not received within a
given timeout period, then the source will replay the tuple again.
Storm can only provide the weaker at-most-once semantics when
the ack mechanism is disabled. Trident provides a higher-level
programming abstraction over Storm which provides a stronger,
exactly-once processing guarantee based on automatic replication
[5]. While these guarantees ensure some level of consistency against
failures, they are not sufficient to support atomicity and isolation
as in the case of ACID guarantees. Furthermore, Storm focuses on
purely streaming topologies and thus lacks support for dealing with
persistent state and OLTP transactions.

Spark Streaming extends the Spark batch processing engine with
support for discretized streams (D-Streams) [40]. Analytical com-
putations are divided into a series of stateless, deterministic trans-
formations over small batches of input tuples. Like STREAM, tu-
ples are processed atomically within each of these batches. All state
in Spark Streaming is stored in in-memory data structures called
Resilient Distributed Datasets (RDDs). RDDs are partitioned and
immutable. Like Storm+Trident, Spark Streaming provides exactly-
once consistency semantics. Furthermore, the RDD-based state
management model incurs high overhead for transactional work-
loads that require many fine-grained update operations (due to main-
taining a large number of RDDs and managing their lineage).

Several of the new-generation streaming systems adopt a state-
ful dataflow model with support for in-memory state management.
SEEP decouples a streaming operator’s state from its processing
logic, thereby making state directly manageable by the system via
a well-defined set of primitive scale-out and fault-tolerance op-
erations [20]. SEEP has also been extended to support iterative
cyclic computations [21]. Naiad extends the MapReduce model
with support for structured cycles and streaming [32]. Naiad’s
timely dataflow model uses logical timestamps for coordination.
Samza isolates multiple processors by localizing their state and dis-
allowing them from sharing data, unless data is explicitly written to
external storage [2]. Like S-Store, all of these systems treat state
as mutable and explicitly manageable, but since they all focus on
analytical and cyclic dataflow graphs, they do not provide inherent
support for transactional access to shared state, thus their consis-
tency guarantees are weaker than S-Store’s.

Microsoft Trill is a new analytics engine that supports a diverse
spectrum of queries (including streaming, historical, and progres-
sive/exploratory) with real-time to offline latency requirements [15].
Trill is based on a tempo-relational query model that incrementally
processes events in batches organized as columns. Trill’s adaptive
batching and punctuation mechanisms enable trading off through-
put for latency in case of higher loads. Both Trill and S-Store tar-
get hybrid workloads that include streaming, strive to maximize
throughput while controlling latency, and are capable of in-memory



processing of events in adjustable batch granularity. However, S-
Store focuses more on OLTP settings with shared mutable state,
whereas Trill focuses more on OLAP settings with read-mostly
state. Therefore, S-Store pays more attention to providing correct-
ness guarantees in the face of concurrent access, processing depen-
dencies, and failures without sacrificing performance.

6. SUMMARY & FUTURE DIRECTIONS
This paper has defined a new model of transactions for stream

processing. We have presented the design and implementation of a
novel system called S-Store that seamlessly combines OLTP trans-
action processing with our transactional stream processing model.
We have also shown how this symbiosis can be implemented in
the context of a main-memory, OLTP DBMS in a straight-forward
way. S-Store is shown to outperform H-Store, Esper, and Storm on
a streaming workload that requires transactional state access, while
at the same time providing stronger correctness guarantees.

Future work includes extending S-Store to operate on multiple
nodes. We plan to address a number of research issues includ-
ing data and workload partitioning, distributed recovery, and dis-
tributed transaction scheduling. We also plan to investigate han-
dling of dynamic and hybrid (OLTP+streaming) workloads.
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