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ABSTRACT

We present Swarm, a novel architecture that exploits
ordered irreqular parallelism, which is abundant but hard
to mine with current software and hardware techniques.
In this architecture, programs consist of short tasks
with programmer-specified timestamps. Swarm executes
tasks speculatively and out of order, and efficiently spec-
ulates thousands of tasks ahead of the earliest active
task to uncover ordered parallelism. Swarm builds on
prior TLS and HTM schemes, and contributes several
new techniques that allow it to scale to large core counts
and speculation windows, including a new execution
model, speculation-aware hardware task management,
selective aborts, and scalable ordered commits.

We evaluate Swarm on graph analytics, simulation,
and database benchmarks. At 64 cores, Swarm achieves
51-122x speedups over a single-core system, and out-
performs software-only parallel algorithms by 3-18x.

Categories and Subject Descriptors
C.1.4 [Processor architectures|: Parallel architectures
Keywords

Multicore, ordered parallelism, irregular parallelism, fine-
grain parallelism, synchronization, speculative execution

1. INTRODUCTION

Parallel architectures are now pervasive, but thread-
level parallelism in applications is often scarce [19, 35].
Thus, it is crucial that we explore new architectural
mechanisms to efficiently exploit as many types of paral-
lelism as possible. Doing so makes parallel systems more
versatile, easier to program, and, for many applications,
it is the only way to improve performance.

We focus on ordered irreqular parallelism [55], which
is often abundant but hard to exploit. Programs with
ordered irregular parallelism have three key features.
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First, they consist of tasks that must follow a total or

partial order. Second, tasks may have data dependences

that are not known a priori. Third, tasks are not known
in advance. Instead, tasks dynamically create children
tasks and schedule them to run at a future time.

Ordered irregular parallelism is abundant in many do-
mains, such as simulation, graph analytics, and databases.
For example, consider a timing simulator for a parallel
computer. Each task is an event (e.g., executing an
instruction in a simulated core). Each task must run at
a specific simulated time (introducing order constraints
among tasks), and modifies a specific component (possi-
bly introducing data dependences among tasks). Tasks
dynamically create other tasks (e.g., a simulated memory
access), possibly for other components (e.g., a simulated
cache), and schedule them for a future simulated time.

Prior work has tried to exploit ordered parallelism in
software [33,34], but has found that, in current multi-
cores, runtime overheads negate the benefits of paral-
lelism. This motivates the need for architectural support.

To guide our design, we first characterize several ap-
plications with ordered irregular parallelism (Sec. 2).
We find that tasks in these applications are as small
as a few tens of instructions. Moreover, many of these
algorithms rarely have true data dependences among
tasks, and their maximum achievable parallelism ex-
ceeds 100x. It may seem that thread-level speculation
(TLS) [28,60,66,68], which speculatively parallelizes se-
quential programs, could exploit this parallelism. How-
ever, this is not the case due to two reasons (Sec. 3):

e Ordered irregular algorithms have little parallelism
when written as sequential programs. To enforce or-
der constraints, sequential implementations introduce
false data dependences among otherwise independent
tasks. For example, sequential implementations of
timing simulators use a priority queue to store future
tasks. Priority queue accesses introduce false data
dependences that limit the effectiveness of TLS.

e To scale, ordered irregular algorithms need very large
speculation windows, of thousands of tasks (hundreds
of thousands of instructions). Prior TLS schemes use
techniques that scale poorly beyond few cores and
cannot support large speculation windows.

We present Swarm, an architecture that tackles these
challenges. Swarm consists of (i) a task-based execution
model where order constraints do not introduce false
data dependences, and (i7) a microarchitecture that



prioQueue.enqueue(source, 0)
while prioQueue not empty:
(node, dist) = prioQueue.dequeueMin() source 3
if node.distance not set:
node.distance = dist
for child in node.children:
d = dist + distance(node, child)
prioQueue.enqueue(child, d) 2

(a) Dijkstra’s sssp code, highlighting (b) Example graph and
the non-visited and visited paths

that each task may follow

resulting shortest-path
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(c) Tasks executed by sssp. Each task shows
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Order = Distance from source node

(d) A correct speculative
schedule that achieves
2x parallelism

the node it visits. Tasks that visit the
same node have a data dependence

Figure 1: Dijkstra’s single-source shortest paths algorithm (sssp) has plentiful ordered irregular

parallelism.

leverages this execution model to scale efficiently (Sec. 4).

Swarm is a tiled multicore with distributed task queues,
speculative out-of-order task execution, and ordered task
commits. Swarm adapts prior eager version management
and conflict detection schemes [48,79], and features sev-
eral new techniques that allow it to scale. Specifically,
we make the following novel contributions:

e An execution model based on tasks with programmer-
specified timestamps that conveys order constraints
to hardware without undue false data dependences.

e A hardware task management scheme that features
speculative task creation and dispatch, drastically re-
ducing task management overheads, and implements
a very large speculation window.

e A scalable conflict detection scheme that leverages
eager versioning to, upon mispeculation, selectively
abort the mispeculated task and its dependents (un-
like prior TLS schemes that forward speculative data,
which abort all later tasks).

e A distributed commit protocol that allows ordered
commits without serialization, supporting multiple
commits per cycle with modest communication (un-
like prior schemes that rely on successor lists, token-
passing, and serialized commits).

We evaluate Swarm in simulation (Sec. 5 and Sec. 6)
using six challenging workloads: four graph analytics al-
gorithms, a discrete-event simulator, and an in-memory
database. At 64 cores, Swarm achieves speedups of 51—
122x over a single-core Swarm system, and outperforms
state-of-the-art parallel implementations of these algo-
rithms by 2.7-18.2x. In summary, by making ordered
execution scalable, Swarm speeds up challenging algo-
rithms that are currently limited by stagnant single-core
performance. Moreover, Swarm simplifies parallel pro-
gramming, as it frees developers from using error-prone
explicit synchronization.

2. MOTIVATION

2.1 Ordered Irregular Parallelism

Applications with ordered irregular parallelism have
three main characteristics [33,55]. First, they consist
of tasks that must follow a total or partial order. Sec-
ond, tasks are not known in advance. Instead, tasks
dynamically create children tasks, and schedule them to
run at a future time. Task execution order is different
from task creation order. Third, tasks may have data
dependences that are not known a priori.

Ordered irregular algorithms are common in many do-
mains. First, they are common in graph analytics, espe-
cially in search problems [33,55]. Second, they are impor-
tant in simulating systems whose state evolves over time,
such as circuits [47], computers [12,59], networks [37,72],
healthcare systems [39], and systems of partial differ-
ential equations [32,44]. Third, they are needed in
systems that must maintain externally-imposed order
constraints, such as geo-replicated databases where trans-
actions must appear to execute in timestamp order [14],
or deterministic architectures [17,45] and record-and-
replay systems [36,77] that constrain the schedule of
parallel programs to ensure deterministic execution.

To illustrate the challenges in parallelizing these appli-
cations, consider Dijkstra’s single-source shortest paths
(sssp) algorithm [15,22]. sssp finds the shortest dis-
tance between some source node and all other nodes
in a graph with weighted edges. Fig. 1(a) shows the
sequential code for sssp, which uses a priority queue to
store tasks. Each task operates on a single node, and
is ordered by its tentative distance to the source node.
sssp relies on task order to guarantee that the first task
to visit each node comes from a shortest path. This
task sets the node’s distance and enqueues all its chil-
dren. Fig. 1(b) shows an example graph, and Fig. 1(c)
shows the tasks that sssp executes to process this graph.
Fig. 1(c) shows the order of each task (its distance to
the source node) in the z-axis, and outlines both parent-
child relationships and data dependences. For example,
task A at distance 0, denoted (A4, 0), creates children
tasks (C,2) and (B, 3); and tasks (B, 3) and (B,4) both
access node B, so they have a data dependence.

A distinctive feature of irregular parallel programs
is that task creation and execution order are different:
children tasks are not immediately runnable, but are
subject to a global order influenced by all other tasks in
the program. For example, in Fig. 1(c), (C,2) creates
(B,4), but running (B, 4) immediately would produce
the wrong result, as (B, 3), created by a different parent,
must run first. Sequential implementations of these pro-
grams use scheduling data structures, such as priority or
FIFO queues, to process tasks in the right order. These
scheduling structures introduce false data dependences
that restrict parallelism and hinder TLS (Sec. 3).

Order constraints limit non-speculative parallelism.
For example, in Fig. 1(c), only (B,4) and (D,4) can
run in parallel without violating correctness. A more
attractive option is to use speculation to elide order



constraints. For example, Fig. 1(d) shows a speculative
schedule for sssp tasks. Tasks in the same z-axis posi-
tion are executed simultaneously. This schedule achieves
2x parallelism in this small graph; larger graphs allow
more parallelism (Sec. 2.2). This schedule produces
the correct result because, although it elides order con-
straints, it happens to respect data dependences. Unfor-
tunately, data dependences are not known in advance, so
speculative execution must detect dependence violations
and abort offending tasks to preserve correctness.

Recent work has tried to exploit ordered parallelism
using speculative software runtimes [33, 34], but has
found that the overheads of ordered, speculative execu-
tion negate the benefits of parallelism. This motivates
the need for hardware support.

2.2 Analysis of Ordered Irregular Algorithms

To quantify the potential for hardware support and
guide our design, we first analyze the parallelism and
task structure of several ordered irregular algorithms.
Benchmarks: We analyze six benchmarks from the
domains of graph analytics, simulation, and databases:
o bfs finds the breadth-first tree of an arbitrary graph.
e sssp is Dijkstra’s algorithm (Sec. 2.1).

e astar uses the Ax pathfinding algorithm [31] to find
the shortest route between two points in a road map.

e msfis Kruskal’s minimum spanning forest algorithm [15].

e des is a discrete-event simulator for digital circuits.

Each task represents a signal toggle at a gate input.

e silo is an in-memory OLTP database [71].
Sec. 5 describes their input sets and methodology details.
Analysis tool: We developed a pintool [46] to analyze
these programs in x86-64. We focus on the instruction
length, data read and written, and intrinsic data depen-
dences of tasks, excluding the overheads and serialization
introduced by the specific runtime used.

The tool uses a simple runtime that executes tasks
sequentially. The tool profiles the number of instructions
executed and addresses read and written (i.e., the read
and write sets) of each task. It filters out reads and
writes to the stack, the priority queue used to schedule
tasks, and other runtime data structures such as the
memory allocator. With this information, the tool finds
the critical path length of the algorithm: the sequence
of data-dependent tasks with the largest number of in-
structions. The tool then finds the mazimum achievable
speedup by dividing the sum of instructions of all tasks
by the critical path length [78] (assuming unbounded
cores and constant cycles per instruction). Note that
this analysis constrains parallelism only by true data
dependences: task order dictates the direction of data
flow in a dependence, but is otherwise superfluous given
perfect knowledge of data dependences.

Table 1 summarizes the results of this analysis. We
derive three key insights that guide the design of Swarm:
Insight 1: Parallelism is plentiful. These applica-
tions have at least 158x maximum parallelism (msf),
and up to 3440x (bfs). Thus, most order constraints
are superfluous, making speculative execution attractive.
Insight 2: Tasks are small. Tasks are very short,

Application bfs sssp astar msf des silo
Maximum

parallelism 3440x 793x  419x  158x  1440x 318x
Parallelism = go7. 178, g2x  147x  198x  125x

window=1K

Parallelism
window=64

mean 22 32 195 40 296
90th 47 70 508 40 338

mean 4.0 5.8 22 7.1 50 88

H8 X 26 x 16x 49x 32x 17x

1969

Instrs 2403

Reads o\ 8 11 51 7 57 110
Whrites mean 0.33 0.41 0.26 0.03 10.5 26

90th 1 1 1 0 11 51
xizligﬁssm 1.03x 1.10x 1.04x 158x 1.15x 45x

Table 1: Maximum achievable parallelism and
task characteristics (instructions and 64-bit
words read and written) of representative or-
dered irregular applications.

ranging from a few tens of instructions (bfs, sssp, msf),
to a few thousand (silo). Tasks are also relatively uni-
form: 90th-percentile instructions per task are close to
the mean. Tasks have small read- and write-sets. For
example, sssp tasks read 5.8 64-bit words on average,
and write 0.4 words. Small tasks incur large overheads
in software runtimes. Moreover, order constraints pre-
vent runtimes from grouping tasks into coarser-grain
units to amortize overheads. Hardware support for task
management can drastically reduce these overheads.
Insight 3: Need a large speculation window. Ta-
ble 1 also shows the achievable parallelism within a
limited task window. With a T-task window, the tool
does not schedule an independent task until all work
more than T tasks behind has finished. Small windows
severely limit parallelism. For example, parallelism in
sssp drops from 793x with an infinite window, to 178x
with a 1024-task window, to 26 x with a 64-task window.
Thus, for speculation to be effective, the architecture
must support many more speculative tasks than cores.

These insights guide the design of Swarm. Our goal is
to approach the maximum achievable parallelism while
incurring only moderate overheads.

3. BACKGROUND ON HW SUPPORT FOR
SPECULATIVE PARALLELISM

Much prior work has investigated thread-level spec-
ulation (TLS) schemes to parallelize sequential pro-
grams [25,28,60,61,66,69]. TLS schemes ship tasks
from function calls or loop iterations to different cores,
run them speculatively, and commit them in program
order. Although TLS schemes support ordered specula-
tive execution, we find that two key problems prevent
them from exploiting ordered irregular parallelism:

1. False data dependences limit parallelism: To
run under TLS, ordered algorithms must be expressed
as sequential programs, but their sequential implemen-
tations have limited parallelism. Consider the code in
Fig. 1(a), where each iteration dequeues a task from
the priority queue and runs it, potentially enqueuing



more tasks. Frequent data dependences in the priority
queue, not among tasks themselves, cause frequent con-
flicts and aborts. For example, iterations that enqueue
high-priority tasks often abort all future iterations.

Table 1 shows the maximum speedups that an ideal
TLS scheme achieves on sequential implementations of
these algorithms. These results use perfect speculation,
an infinite task window, word-level conflict detection,
immediate forwarding of speculative data, and no com-
munication delays. Yet parallelism is meager in most
cases. For example, sssp has 1.1x parallelism. Only
msf and silo show notable speedups, because they need
no queues: their task orders match loop iteration order.

The root problem is that loops and method calls,
the control-flow constructs supported by TLS schemes,
are insufficient to express the order constraints among
these tasks. By contrast, Swarm implements a more
general execution model with timestamp-ordered tasks
to avoid software queues, and implements hardware
priority queues integrated with speculation mechanisms,
avoiding spurious aborts due to queue-related references.
2. Scalability bottlenecks: Although prior TLS
schemes have developed scalable versioning and con-
flict detection schemes, two challenges limit their perfor-
mance with large speculation windows and small tasks:
Forwarding vs selective aborts: Most TLS schemes find
it is desirable to forward data written by an earlier, still-
speculative task to later reader tasks. This prevents later
tasks from reading stale data, reducing mispeculations
on tight data dependences. However, it creates complex
chains of dependences among speculative tasks. Thus,
upon detecting mispeculation, most TLS schemes abort
the task that caused the violation and all later speculative
tasks [25,28,61,66,68]. TCC [29] and Bulk [11] are the
exception: they do not forward data and only abort later
readers when the earlier writer commits.

We find that forwarding speculative data is crucial for
Swarm. However, while aborting all later tasks is rea-
sonable with small speculative windows (2-16 tasks are
typical in prior work), Swarm has a 1024-task window,
and unselective aborts are impractical. To address this,
we contribute a novel conflict detection scheme based on
eager version management that allows both forwarding
speculative data and selective aborts of dependent tasks.
Commit serialization: Prior TLS schemes enforce in-
order commits by passing a token among ready-to-commit
tasks [28,61,66,68]. Each task can only commit when
it has the token, and passes the token to its immediate
successor when it finishes committing. This approach
cannot scale to the commit throughput that Swarm
needs. For example, with 100-cycle tasks, a 64-core sys-
tem should commit 0.64 tasks/cycle on average. Even
if commits were instantaneous, the latency incurred by
passing the token makes this throughput unachievable.

To tackle this problem, we show that, by adapting
techniques from distributed systems, we can achieve in-
order commits without serialization, token-passing, or
building successor lists.
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Figure 2: Swarm CMP and tile configuration.

4. SWARM: AN ARCHITECTURE FOR OR-
DERED PARALLELISM

Fig. 2 shows Swarm’s high-level organization. Swarm

is a tiled, cache-coherent chip multiprocessor (CMP).
Each tile has a group of simple cores. Each core has
small, private, write-through L1 caches. All cores in a
tile share a per-tile L2 cache, and each tile has a slice
of a shared NUCA L3 cache. Each tile features a task
unit that queues, dispatches, and commits tasks. Tiles
communicate through a mesh NoC.
Key features: Swarm is optimized to execute short
tasks with programmer-specified order constraints. Pro-
grammers define the execution order by assigning time-
stamps to tasks. Tasks can create children tasks with
equal or later timestamps than their own. Tasks appear
to execute in global timestamp order, but Swarm uses
speculation to elide order constraints.

Swarm is coherently designed to support a large specu-
lative task window efficiently. Swarm has no centralized
structures: each tile’s task unit queues runnable tasks
and maintains the speculative state of finished tasks
that cannot yet commit. Task units only communicate
when they send new tasks to each other to maintain load
balance, and, infrequently, to determine which finished
tasks can be committed.

Swarm speculates far ahead of the earliest active task,
and runs tasks even if their parent is still speculative.
Fig. 3(a) shows this process: a task with timestamp
0 is still running, but tasks with later timestamps and
several speculative ancestors are running or have finished
execution. For example, the task with timestamp 51,
currently running, has three still-speculative ancestors,
two of which have finished and are waiting to commit
(8 and 20) and one that is still running (40).

Allowing tasks with speculative ancestors to execute
uncovers significant parallelism, but may induce aborts
that span multiple tasks. For example, in Fig. 3(b) a
new task with timestamp 35 conflicts with task 40, so
40 is aborted and child task 51 is both aborted and
discarded. These aborts are selective, and only affect
tasks whose speculative ancestors are aborted, or tasks
that have read data written by an aborted task.

We describe Swarm in a layered fashion. First, we
present Swarm’s ISA extensions. Second, we describe
Swarm hardware assuming that all queues are unbounded.
Third, we discuss how Swarm handles bounded queue
sizes. Fourth, we present Swarm’s hardware costs.



Legend Task fimestamp
Task state
IDLE (I) RUNNING (R) FINISHED (F) O Child task
o 8 20 8 35 Q
. 0 22 0 22
Tiel [ . ° X @

" 3 32 42 32 42
Tile 2 F R | 3F R |

(a) Tasks far ahead of the minimum timestamp (0) (b) Selective aborts: Task 35 aborts
are run, even when parent is still speculative 40 and child 51, but not 42

Figure 3: Example execution of sssp. By ex-
ecuting tasks even if their parents are specula-
tive, Swarm uncovers ordered parallelism, but
may trigger selective aborts.

4.1 ISA Extensions and Programming Model

Swarm manages and dispatches tasks using hardware
task queues. A task is represented by a descriptor with
the following architectural state: the task’s function
pointer, a 64-bit timestamp, and the task’s arguments.

Tasks appear to run in timestamp order. Tasks with
the same timestamp may execute in any order, but run
atomically—the system lazily selects an order for them.

A task can create one or more children tasks with an
equal or later timestamp than its own. A child is ordered
after its parent, but children with the same timestamp
may execute in any order. Because hardware must track
parent-child relations, tasks may create a limited number
of children (8 in our implementation). Tasks that need
more children enqueue a single task that creates them.

Swarm adds instructions to enqueue and dequeue
tasks. The enqueue_task instruction accepts a task
descriptor (held in registers) as its input and queues the
task for execution. A thread uses the dequeue_task
instruction to start executing a previously-enqueued
task. dequeue_task initiates speculative execution at
the task’s function pointer and makes the task’s time-
stamp and arguments available (in registers). Task exe-
cution ends with a finish_task instruction.

dequeue_task stalls the core if an executable task is
not immediately available, avoiding busy-waiting. When
no tasks are left in any task unit and all threads are
stalled on dequeue_task, the algorithm has terminated,
and dequeue_task jumps to a configurable pointer to
handle termination.

API: We design a low-level C++ API that uses these
mechanisms. Tasks are simply functions with signature:

void taskFn(timestamp, args...)
Code can enqueue other tasks by calling:
enqueueTask (taskFn, timestamp, args...)
If a task needs more than the maximum number of

task descriptor arguments, three 64-bit words in our
implementation, the runtime allocates them in memory.

4.2 Task Queuing and Prioritization

The task unit has two main structures:

1. The task queue holds task descriptors (function pointer,
timestamp, and arguments).

2. The commit queue holds the speculative state of tasks
that have finished execution but cannot yet commit.

Incoming Task

X ‘ Task States: IDLE (I) RUNNING (R) FINISHED (F) ‘
(timestamp=7, taskFn, args)

Task Queue Cores Task Queue Cores Task Queve Cores
7 i -ElT S [T
9,1 9,1 9,R
10,1 Commit Queve 10,1 Commit Queve 10,1 <Commil Queve
2,R 2,F 2,F =
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3,F 3 g7 3 7 3

(a) Task with timestamp 7 (b) Task with timestamp 2 (c) Task with timestamp 7
arrives, is queved finishes, 7 starts running finishes, 9 starts running

Figure 4: Task queue and commit queue utiliza-
tion through a task’s lifetime.

Tile 1 TASK(descriptor, parentPtr = (1, 4)) Tile 3
Core Task
) ©) TASK_ACK (childPtr = (3, 8)) Queue

Task @ task queue position 4
starts running
New child task for tile 3

Allocate task queue entry 8

o Store task descriptor and
parent pointer (1, 4)

O Record new child pointer (3, 8)
Figure 5: Task creation protocol. Cores send
new tasks to other tiles for execution. To track
parent-child relations, parent and child keep a
pointer to each other.

Fig. 4 shows how these queues are used throughout the
task’s lifetime. Each new task allocates a task queue en-
try, and holds it until commit time. Each task allocates
a commit queue entry when it finishes execution, and
also deallocates it at commit time. For now, assume
these queues always have free entries. Sec. 4.7 discusses
what happens when they fill up.

Together, the task queue and commit queue are sim-
ilar to a reorder buffer, but at task-level rather than
instruction-level. They are separate structures because
commit queue entries are larger than task queue entries,
and typically fewer tasks are waiting to commit than
to execute. However, unlike in a reorder buffer, tasks
do not arrive in priority order. Both structures man-
age their free space with a freelist and allocate entries
independently of task priority order, as shown in Fig. 4.
Task enqueues: When a core creates a new task
(through enqueue_task), it sends the task to a randomly-
chosen target tile following the protocol in Fig. 5. Parent
and child track each other using task pointers. A task
pointer is simply the tuple (tile, task queue position).
This tuple uniquely identifies a task because it stays in
the same task queue position throughout its lifetime.
Task prioritization: Tasks are prioritized for execu-
tion in timestamp order. When a core calls dequeue_-
task, the highest-priority idle task is selected for exe-
cution. Since task queues do not hold tasks in priority
order, an auxiliary order queue is used to find this task.

The order queue can be cheaply implemented with two
small ternary content-addressable memories (TCAMs)
with as many entries as the task queue (e.g., 256), each
of which stores a 64-bit timestamp. With Panigrahy and
Sharma’s PIDR_OPT method [54], finding the next task
to dispatch requires a single lookup in both TCAMs, and
each insertion (task creation) and deletion (task commit
or squash) requires two lookups in both TCAMs. SRAM-



based implementations are also possible, but we find the
small TCAMs to have a moderate cost (Sec. 4.8).

4.3 Speculative Execution and Versioning

The key requirements for speculative execution in
Swarm are allowing fast commits and a large speculative
window. To this end, we adopt eager versioning, storing
speculative data in place and logging old values. Eager
versioning makes commits fast, but aborts are slow.
However, Swarm’s execution model makes conflicts rare,
so eager versioning is the right tradeoff.

Eager versioning is common in hardware transactional
memories [30,48,79], which do not perform ordered ex-
ecution or speculative data forwarding. By contrast,
most TLS systems use lazy versioning (buffering specu-
lative data in caches) or more expensive multiversion-
ing [11,25,28,29,56,60,61,66,68,69] to limit the cost of
aborts. Some early TLS schemes are eager [25,80], and
they still suffer from the limitations discussed in Sec. 3.

Swarm’s speculative execution borrows from LogTM
and LogTM-SE [48,63,79]. Our key contributions over
these and other speculation schemes are (i) conflict de-
tection (Sec. 4.4) and selective abort techniques (Sec. 4.5)
that leverage Swarm’s hierarchical memory system and
Bloom filter signatures to scale to large speculative
windows, and (7) a technique that exploits Swarm’s
large commit queues to achieve high-throughput com-
mits (Sec. 4.6).

Fig. 6 shows the per-task state needed to support
speculation: read- and write-set signatures, an undo
log pointer, and child pointers. Each core and commit
queue entry holds this state.

A successful dequeue_task instruction jumps to the
task’s code pointer and initiates speculation. Since spec-
ulation happens at the task level, there are no register
checkpoints, unlike in HTM and TLS. Like in LogTM-SE,
as the task executes, hardware automatically performs
conflict detection on every read and write (Sec. 4.4).
Then, it inserts the read and written addresses into
the Bloom filters, and, for every write, it saves the old
memory value in a memory-resident undo log. Stack
addresses are not conflict-checked or logged.

When a task finishes execution, it allocates a commit
queue entry; stores the read and write set signatures,
undo log pointer, and children pointers there; and frees
the core for another task.

4.4 Virtual Time-Based Conflict Detection

Conflict detection is based on a priority order that
respects both programmer-assigned timestamps and par-
ent-child relationships. Conflicts are detected at cache
line granularity.

Unique virtual time: Tasks may have the same pro-
grammer-assigned timestamp. However, conflict detec-
tion has much simpler rules if tasks follow a total order.
Therefore, tasks are assigned a unique virtual time when
they are dequeued for execution. Unique virtual time
is the 128-bit tuple (programmer timestamp, dequeue
cycle, tile id). The (dequeue cycle, tile id) pair is unique
since at most one dequeue per cycle is permitted at a

Read Set Signature
[ 00100000100 ... 10 |
Write Set Signature

K-way N-bit Bloom filters

— Line Address ~

hash, hash,
[ 00100 000000 ... 01 |
Undo Log Pointer 0|0[|O|1[1]|0O[1]|O]|--- |O]O|O[1|O|O|T1|O
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Figure 6: Speculative state for each task. Each
core and commit queue entry maintains this
state. Read and write sets are implemented with
space-efficient Bloom filters.

tile. Conflicts are resolved using this unique virtual time,

which tasks preserve until they commit.

Unique virtual times incorporate the ordering needs
of programmer-assigned timestamps and parent-child
relations: children always start execution after their
parents, so a parent always has a smaller dequeue cycle
than its child, and thus a smaller unique virtual time,
even when parent and child have the same timestamp.
Conflicts and forwarding: Conflicts arise when a
task accesses a line that was previously accessed by a
later-virtual time task. Suppose two tasks, t; and to,
are running or finished, and t5 has a later virtual time.
A read of ¢; to a line written by ¢y or a write to a line
read or written by o causes to to abort. However, to can
access data written by ¢; even if ¢; is still speculative.
Thanks to eager versioning, t5 automatically uses the
latest copy of the data—there is no need for speculative
data forwarding logic [25].

Hierarchical conflict detection: Swarm exploits the

cache hierarchy to reduce conflict checks. Fig. 7 shows

the different types of checks performed in an access:

1. The L1 is managed as described below to ensure L1
hits are conflict-free.

2. L1 misses are checked against other tasks in the tile
(both in other cores and in the commit queue).

3. L2 misses, or L2 hits where a virtual time check
(described below) fails, are checked against tasks in
other tiles. As in LogTM [48], the L3 directory uses
memory-backed sticky bits to only check tiles whose
tasks may have accessed the line. Sticky bits are
managed exactly as in LogTM.

Any of these conflicts trigger task aborts.

Using caches to filter checks: The key invariant that al-

lows caches to filter checks is that, when a task with

virtual time T installs a line in the (L1 or L2) cache,

that line has no conflicts with tasks of virtual time > T'.

As long as the line stays cached with the right coherence

permissions, it stays conflict-free. Because conflicts hap-

pen when tasks access lines out of virtual time order, if
another task with virtual time U > T accesses the line,
it is also guaranteed to have no conflicts.

However, accesses from a task with virtual time U <
T must trigger conflict checks, as another task with
intermediate virtual time X, U < X < T, may have
accessed the line. U’s access does not conflict with 7T,
but may conflict with X’s. For example, suppose a task
with virtual time X = 2 writes line A. Then, task T' =3
in another core reads A. This is not a conflict with X'’s
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write, so A is installed in T’s L1. The core then finishes
T and dequeues a task U = 1 that reads A. Although
A is in the L1, U has a conflict with X’s write.

We handle this issue with two changes. First, when a
core dequeues a task with a smaller virtual time than the
one it just finished, it flushes the L1. Because L1s are
small and write-through, this is fast, simply requiring
to flash-clear the valid bits. Second, each L2 line has an
associated canary virtual time, which stores the lowest

task virtual time that need not perform a global check.

For efficiency, lines in the same L2 set share the same
canary virtual time. For simplicity, this is the maximum
virtual time of the tasks that installed each of the lines
in the set, and is updated every time a line is installed.
Efficient commit queue checks: Although caches reduce
the frequency of conflict checks, all tasks in the tile must

be checked on every L2 access and on some global checks.

To allow large commit queues (e.g., 64 tasks/queue),
commit queue checks must be efficient. To this end, we
leverage that checking a K-way Bloom filter only requires
reading one bit from each way. As shown in Fig. 8,
Bloom filter ways are stored in columns, so a single 64-bit
access per way reads all the necessary bits. Reading and
ANDing all ways yields a word that indicates potential
conflicts. For each queue entry whose position in this
word is set, its virtual time is checked; those with virtual
time higher than the issuing task’s must be aborted.

4.5 Selective Aborts

Upon a conflict, Swarm aborts the later task and all
its dependents: its children and other tasks that have
accessed data written by the aborting task. Hardware
aborts each task t in three steps:

1. Notify t’s children to abort and be removed from their
task queues.

2. Walk t’s undo log in LIFO order, restoring old values.

If one of these writes conflicts with a later-virtual time
task, wait for it to abort and continue ¢’s rollback.

3. Clear t’s signatures and free its commit queue entry.

Applied recursively, this procedure selectively aborts
all dependent tasks, as shown in Fig. 10. This scheme has
two key benefits. First, it reuses the conflict-detection
logic used in normal operation. Undo-log writes (e.g., A’s
second wr 0x10 in Fig. 10) are normal conflict-checked

Figure 8: Commit queues store read- and
write-set Bloom filters by columns, so a single
access reads bit from all entries. All entries
are checked in parallel.
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Figure 10: Selective abort protocol. Suppose
(A,1) must abort after it writes 0x10. (A4,1)’s
abort squashes child (D,4) and grandchild (E,5).
During rollback, A also aborts (C,3), which read
A’s speculative write to 0x10. (B,2) is indepen-
dent and thus not aborted.

writes, issued with the task’s timestamp to detect all
later readers and writers. Second, this scheme does not
explicitly track data dependences among tasks. Instead,
it uses the conflict-detection protocol to recover them
as needed. This is important, because any task may
have served speculative data to many other tasks, which
would make explicit tracking expensive. For example,
tracking all possible dependences on a 1024-task window
using bit-vectors, as proposed in prior work [13, 58],
would require 1024 x 1023 ~1 Mbit of state.

4.6 Scalable Ordered Commits

To achieve high-throughput commits, Swarm adapts
the virtual time algorithm [38], common in parallel dis-
crete event simulation [21]. Fig. 9 shows this protocol.
Tiles periodically send the smallest unique virtual time
of any unfinished (running or idle) task to an arbiter.
Idle tasks do not yet have a unique virtual time and
use (timestamp, current cycle, tile id) for the purposes
of this algorithm. The arbiter computes the minimum
virtual time of all unfinished tasks, called the global
virtual time (GVT), and broadcasts it to all tiles. To
preserve ordering, only tasks with virtual time < GVT
can commit.

The key insight is that, by combining the virtual
time algorithm with Swarm’s large commit queues, com-
mit costs are amortized over many tasks. A single



GVT update often causes many finished tasks to com-
mit. For example, if in Fig. 9 the GVT jumps from
(80,100,2) to (98,550,1), all tasks with virtual time
(80,100,2)< t <(98,550,1) can commit. GVT updates
happen sparingly (e.g., every 200 cycles) to limit band-
width. Less frequent updates reduce bandwidth but
increase commit queue occupancy.

In addition, eager versioning makes commits fast: a
task commits by freeing its task and commit queue
entries, a single-cycle operation. Thus, if a long-running
task holds the GVT for some time, once it finishes,
commit queues quickly drain and catch up to execution.

Compared with prior TLS schemes that use successor
lists and token passing to reconcile order (Sec. 3), this
scheme does not even require finding the successor and
predecessor of each task, and does not serialize commits.

For the system sizes we evaluate, a single GVT arbiter
suffices. Larger systems may need a hierarchy of arbiters.

4.7 Handling Limited Queue Sizes

The per-tile task and commit queues may fill up, re-
quiring a few simple actions to ensure correct operation.
Task queue virtualization: Applications may create
an unbounded number of tasks and schedule them for a
future time. Swarm uses an overflow/underflow mech-
anism to give the illusion of unbounded hardware task
queues [27,41,64]. When the per-tile task queue is nearly
full, the task unit dispatches a special, non-speculative
coalescer task to one of the cores. This coalescer task
removes several non-speculative, idle task descriptors
with high programmer-assigned timestamps from the
task queue, stores them in memory, and enqueues a
splitter task that will re-enqueue the overflowed tasks.

Note that only non-speculative task queue entries can
be moved to software. These (i) are idle, and (i) have no
parent (i.e., their parent has already committed). When
all entries are speculative, we need another approach.
Virtual time-based allocation: The task and com-
mit queues may also fill up with speculative tasks. The
general rule to avoid deadlock due to resource exhaustion
is to always prioritize earlier-virtual time tasks, aborting
other tasks with later virtual times if needed. For ex-
ample, if a tile speculates far ahead, fills up its commit
queue, and then receives a task that precedes all other
speculative tasks, the tile must let the preceding task
execute to avoid deadlock. This results in three specific
policies for the commit queue, cores, and task queue.
Commit queue: If task ¢ finishes execution, the commit
queue is full, and t precedes any of the tasks in the
commit queue, it aborts the highest-virtual time finished
task and takes its commit queue entry. Otherwise, ¢
stalls its core, waiting for an entry.

Cores: If task t arrives at the task queue, the commit
queue is full, and t precedes all tasks in cores, t aborts
the highest-virtual time task and takes its core.

Task queue: Suppose task t arrives at a task unit but
the task queue is full. If some tasks are non-speculative,
then a coalescer is running, so the task waits for a free
entry. If all tasks in the task queue are speculative, the
enqueued request is NACK’d (instead of ACK’d as in

Entries Entry size Size Est. area

Task queue 256 51B 12.75KB 0.056 mm?
Commit filters 64 16x32B  32KB (2-port) 0.304 mm?
queue other 64 36B 2.25KB 0.012 mm?
Order queue 256 2x8B 4KB (TCAM) 0.175mm?

Table 2: Sizes and estimated areas of main task
unit structures.

Fig. 5) and the parent task stalls, and retries the enqueue
using linear backoff. To avoid deadlock, we leverage that
when a task’s unique virtual time matches the GVT,
it is the smallest-virtual time task in the system, and
cannot be aborted. This task need not keep track of its
children (no child pointers), and when those children are
sent to another tile, they can be overflowed to memory
if the task queue is full. This ensures that the GVT task
makes progress, avoiding deadlock.

4.8 Analysis of Hardware Costs

We now describe Swarm’s overheads. Swarm adds
task units, a GVT arbiter, and modifies cores and L2s.

Table 2 shows the per-entry sizes, total queue sizes,
and area estimates for the main task unit structures: task
queue, commit queue, and order queue. All numbers are
for one per-tile task unit. We assume a 16-tile, 64-core
system as in Fig. 2, with 256 task queue entries (64 per
core) and 64 commit queue entries (16 per core). We use
CACTI [70] for the task and commit queue SRAM areas
(using 32 nm ITRS-HP logic) and scaled numbers from
a commercial 28 nm TCAM [3] for the order queue area.
Task queues use single-port SRAMs. Commit queues use
several dual-port SRAMs for the Bloom filters (Fig. 8),
which are 2048-bit, 8-way in our implementation, and
a single-port SRAM for all other state (unique virtual
time, undo log pointer, and child pointers).

Overall, these structures consume 0.55 mm? per 4-core
tile, or 8.8 mm? per chip, a minor cost. Enqueues and de-
queues access the order queue TCAM, which consumes
~T70pJ per access [50]. Moreover, queue operations hap-
pen sparingly (e.g. with 100-cycle tasks, one enqueue
and dequeue every 25 cycles), so energy costs are small.

The GVT arbiter is simple. It buffers a virtual time
per tile, and periodically broadcasts the minimum one.

Cores are augmented with enqueue/dequeue/finish_-
task instructions (Sec. 4.1), the speculative state in
Fig. 6 (530 bytes), a 128-bit unique virtual time, and
logic to insert addresses into Bloom filters and to, on
each store, write the old value to an undo log. Finally,
the L2 uses a 128-bit canary virtual time per set. For an
8-way cache with 64 B lines, this adds 2.6% extra state.

In summary, Swarm’s costs are moderate, and, in
return, confer significant speedups.

S. EXPERIMENTAL METHODOLOGY

Modeled system: We use an in-house microarchi-
tectural, event-driven, sequential simulator based on
Pin [46] to model a 64-core CMP with a 3-level cache hi-
erarchy. We use simple IPC-1 cores with detailed timing
models for caches, on-chip network, and main mem-
ory (adapted from zsim [62]), and also model Swarm



64 cores in 16 tiles (4 cores/tile), 2 GHz, x86-64 ISA,

Cores IPC-1 except misses and Swarm instructions

L1 caches 16KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency
16 MB, shared, static NUCA [40] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories, no silent drops

NoC 4x4 mesh, 256-bit links, X-Y routing, 3 cycles/hop
Main mem 4 controllers at chip edges, 120-cycle latency

64 task queue entries/core (4096 total),
16 commit queue entries/core (1024 total)

L3 cache

Queues

S?:;EE 5 cycles per enqueue/dequeue/finish_task
2048-bit 8-way Bloom filters, Hs hash functions [10]
Conflicts Tile checks take 5 cycles (Bloom filters) + 1 cycle
for every timestamp compared in the commit queue
Commits Tiles and GVT arbiter send updates every 200 cycles
Spills Coalescers fire when a task queue is 75% full
Coalescers spill up to 15 tasks each

Table 3: Configuration of the 64-core CMP.

Software baselines Input Seq run-time
bfs PBFS [43] hugetric-00020 [5, 16] 3.68 Beycles
sssp  Bellman-Ford [33,55] East USA roads [1] 4.42 Bceycles
astar Own Germany roads [53] 2.08 Beycles
msf PBBS [7] kronecker_logn16 [5,16] 2.16 Beycles
des Chandy-Misra [33,55] csaArray32 [55] 3.05 Beycles
silo Silo [71] TPC-C, 4whs, 32Ktxns  2.93 Beycles

Table 4: Benchmark information: source of base-
line implementations, inputs, and run-time of
the serial version.

features (e.g., conflict checks, aborts, etc.) in detail.
Table 3 details the modeled configuration.
Benchmarks: We use the six benchmarks mentioned in
Sec. 2.2: bfs, sssp, astar, msf, des, and silo. Table 4
details their provenance and input sets.

For most benchmarks, we use tuned serial and state-
of-the-art parallel versions from existing suites (Table 4).
We then port each serial implementation to Swarm.
Swarm versions use fine-grain tasks, but use the same
data structures and perform the same work as the serial
version, so differences between serial and Swarm versions
stem from parallelism, not other optimizations.

We wrote our own tuned serial and Swarm astar
implementations. astar is notoriously difficult to par-
allelize—to scale, prior work in parallel pathfinding sac-
rifices solution quality for speed [8]. Thus, we do not
have a software-only parallel implementation.

We port silo to show that Swarm can extract ordered
parallelism from applications that are typically consid-
ered unordered. Database transactions are unordered in
silo. We decompose each transaction into many small
ordered tasks to exploit intra-transaction parallelism.
Tasks from different transactions use disjoint timestamp
ranges to preserve atomicity. This exposes significant
fine-grain parallelism within and across transactions.
Input sets: We use a varied set of inputs, often from
standard collections such as DIMACS (Table 4). bfs
operates on an unstructured mesh; sssp and astar
use large road maps; msf uses a Kronecker graph; des
simulates an array of carry-select adders; and silo runs
the TPC-C benchmark on 4 warehouses.

All benchmarks have serial run-times of over two bil-
lion cycles (Table 4). We have evaluated other inputs
(e.g., random and scale-free graphs), and qualitative dif-

sssp
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| —— msf
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Cores
Figure 11: Swarm self-relative speedups on 1-64
cores. Larger systems have larger queues and
caches, which affect speedups and sometimes
cause superlinear scaling.

ferences are not affected. Note that some inputs can
offer plentiful trivial parallelism to a software algorithm.
For example, on large, shallow graphs (e.g., 10 M nodes
and 10 levels), a simple bulk-synchronous bfs that op-
erates on one level at a time scales well [43]. But we use
a graph with 7.1 M nodes and 2799 levels, so bfs must
speculate across levels to uncover enough parallelism.
For each benchmark, we fast-forward to the start of
the parallel region (skipping initialization), and report
results for the full parallel region.
Idealized memory allocation: Dynamic memory al-
location is not simulated in detail, and a scalable solution
is left to future work. Only des and silo tasks allocate
memory frequently, and data dependences in the sys-
tem’s memory allocator serialize them. In principle, we
could build a task-aware allocator with per-core memory
pools to avoid serialization. However, building high-per-
formance allocators is complex [26,65]. Instead, the
simulator allocates and frees memory in a task-aware
way. Freed memory is not reused until the freeing task
commits to avoid spurious dependences. Each allocator
operation incurs a 30-cycle cost. For fairness, serial and
software-parallel tmplementations also use this allocator.
We believe this simplification will not significantly affect
des and silo results when simulated in detail.

6. EVALUATION

We first compare Swarm with alternative implemen-
tations, then analyze its behavior in depth.

6.1 Swarm Scalability

Fig. 11 shows Swarm’s performance on 1- to 64-core
systems. In this experiment, per-core queue and L2/1.3
capacities are kept constant as the system grows, so
systems with more cores have higher queue and cache
capacities. This captures performance per unit area.

Each line in Fig. 11 shows the speedup of a single
application over a 1-core system (i.e., its self-relative
speedup). At 64 cores, speedups range from 51x (msf) to
122x (sssp), demonstrating high scalability. In addition
to parallelism, the larger queues and L3 of larger systems
also affect performance, causing super-linear speedups
in some benchmarks (sssp, bfs, and astar). We tease
apart the contribution of these factors in Sec. 6.3.
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Figure 12: Speedup of Swarm and state-of-the-art software-parallel implementations from 1 to 64
cores, relative to a tuned serial implementation running on a system of the same size.

6.2 Swarm vs Software Implementations

Fig. 12 compares the performance of the Swarm and 64wh

16wh

software-only versions of each benchmark. Each graph oo | SWarm
shows the speedup of the Swarm and software-parallel 1wh
versions over the tuned serial version running on a system G4wh
of the same size, from 1 to 64 cores. As in Fig. 11, queue lfvv}:h SW-only
and L2/L3 capacities scale with the number of cores. 1wh

Swarm outperforms the serial versions by 43-117x,
and the software-parallel versions by 2.7-18.2x. We ana-
lyze the reasons for these speedups for each application.
bfs: Serial bfs does not need a priority queue. It uses
an efficient FIFO queue to store the set of nodes to
visit. At 1 core, Swarm is 33% slower than serial bfs;
however, Swarm scales to 43x at 64 cores. By contrast,
the software-parallel version, PBFS [43], scales to 6.0,
then slows down beyond 24 cores. PBFS only works silo: Serial silo runs database transactions sequen-
on a single level of the graph at a time, while Swarm tially without synchronization. Swarm outperforms se-
speculates: across multiple lgve_ls. ) rial silo by 10% at one core, and by 57x at 64 cores.
sssp: Serial sssp uses a priority queue. Swarm is 32% The software-parallel version uses a carefully optimized
faster at one core, and 117x faster at 64 cores. The protocol to achieve high transaction rates [71]. Software-
software-parallel version uses the Bellman-Ford algo- parallel silo scales to 8.8x at 64 threads, 6.4x slower
rithm [15]. Bellman-Ford visits nodes out of order to in- than Swarm. The reason is fine-grain pz;rallelism: in
crease parallelism, but wastes work in doing so. Threads Swarm, each task reads or writes at most one tuple. This
in Bellman-Ford communicate infrequently to 11m71t over- exposes parallelism within and across database transac-
heads [33], wasting much more work than Swarm’s spec- tions, and reduces the penalty of conflicts, as only small,
ulative execution. As a result, Bellman-Ford sssp scales dependent tasks are aborted instead of full transactions.
to 14x at 64 cores, 8.1x slower than Swarm. Swarm’s benefits on silo heavily depend on the amount
astar: Our tuned serial astar uses a priority queue to of coarse-grain parallelism, which is mainly determined
store tasks [15]. Swarm outperforms it by 2% at one by the number of TPC-C warehouses. To quantify this
core, and by 66x at 64 cores. ) effect, Fig. 13 shows the speedups of Swarm and software-
msf: The serial and software-parallel msf versions sort parallel silo with 64, 16, 4, and 1 warehouses. With 64
edges by weight to process them in order. Qur Swarm warehouses, software-parallel silo scales linearly up to
implementation instead does this sort implicitly throggh 64 cores and is 4% faster than Swarm. With fewer ware-
the task queues, enqueuing one task per edge and using houses, database transactions abort frequently, limiting
its weight as the timestamp. This allows Swarm to scalability. With a single warehouse, software-parallel
overlap the sort and edge-processing phases. Swarm silo scales to only 2.7x. By contrast, Swarm exploits
outperforms the serial version by 70% at one core and fine-grain parallelism within each transaction, and scales

61x at 64 cores. The S(.)ft.wa.mre-paralld msf uses software well even with a single warehouse, by 49x at 64 cores,
speculation via deterministic reservations [7], and scales 18.2x faster than software-parallel silo.

to 19x at 64 cores, 3.1 slower than Swarm. Overall, these results show that Swarm outperforms

des: Serial des uses a priority queue to simulate events a wide ra’n o of parallel aleorithms. even W}Iien the

in time order. Swarm outperforms the serial version rang ba veorty ’ Y
use application-specific optimizations. Moreover, Swarm

by 23% at one core, and by 57x at 64 cores. The . . - .
software-parallel version uses the Chandy-Misra-Bryant implementations use no explicit synchronization and are
simpler, which is itself valuable.

(CMB) algorithm [47,67]. CMB exploits the simulated
communication latencies among components to safely

Cores

Figure 13: Speedup of Swarm and software silo
with 64, 16, 4, and 1 TPC-C warehouses.

slower than Swarm. Half of Swarm’s speedup comes
from exploiting speculative parallelism, and the other
half from reducing overheads.

execute some events out of order (e.g., if two nodes have 6.3 Swarm Analysis
a 10-cycle simulated latency, they can be simulated up We now analyze the behavior of different benchmarks
to 9 cycles away). CMB scales to 21x at 64 cores, 2.7x in more detail to gain insights about Swarm.
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Figure 14: Breakdown of total core cycles for
Swarm systems with 1 to 64 cores. Most time
is spent executing tasks that are ultimately com-
mitted.

Speedups 1c vs lc-base 64c vs lc-base 64c vs lc
Swarm baseline 1x 77% 7%
+ unbounded queues 1.4x 87x 61x
+ 0-cycle mem system 5x 274x 54x

Table 5: gmean speedups with progressive ide-
alizations: unbounded queues and a zero-cycle
memory system (lc-base = 1-core Swarm base-
line without idealizations).

Cycle breakdowns: Fig. 14 shows the breakdown of
aggregate core cycles. Each set of bars shows results for a
single application as the system scales from 1 to 64 cores.
The height of each bar is the sum of cycles spent by
all cores, normalized by the cycles of the 1-core system
(lower is better). With linear scaling, all bars would have
a height of 1.0; higher and lower bars indicate sub- and
super-linear scaling, respectively. Each bar shows the
breakdown of cycles spent executing tasks that are ulti-
mately committed, tasks that are later aborted, spilling
tasks from the hardware task queue (using coalescer and
splitter tasks, Sec. 4.7), and stalled.

Swarm spends most of the cycles executing tasks that
later commit. At 64 cores, aborted work ranges from
1% (bfs) to 27% (des) of cycles. All graph benchmarks
spend significant time spilling tasks to memory, espe-
cially with few cores (e.g., 47% of cycles for single-core
astar). In all benchmarks but msf, spill overheads
shrink as the system grows and task queue capacity
increases; msf enqueues millions of edges consecutively,
so larger task queues do not reduce spills. Finally, cores
rarely stall due to full or empty queues. Only astar and
msf spend more than 5% of cycles stalled at 64 cores:
27% and 8%, respectively.

Fig. 14 also shows the factors that contribute to super-
linear scaling in Fig. 11. First, larger task queues can
capture a higher fraction of runnable tasks, reducing
spills. Second, larger caches can better fit the working
set, reducing the cycles spent executing committed tasks
(e.g., silo). However, beyond 4-8 cores, the longer hit
latency of the larger NUCA L3 counters its higher hit
rate in most cases, increasing execution cycles.
Speedups with idealizations: To factor out the im-
pact of queues and memory system on scalability, we con-
sider systems with two idealizations: unbounded queues,
which factor out task spills, and an ideal memory system
with 0-cycle delays for all accesses and messages. Ta-
ble 5 shows the gmean speedups when these idealizations
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Figure 17: Sensitivity of 64-core Swarm to com-
mit queue and Bloom filter sizes.
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are progressively applied. The left and middle columns
show 1- and 64-core speedups, respectively, over the
1-core baseline (without idealizations). While idealiza-
tions help both cases, they have a larger impact on the
1-core system. Therefore, the 64-core speedups relative
to the 1-core system with the same idealizations (right
column) are lower. With all idealizations, this speedup
is purely due to exploiting parallelism; 64-core Swarm
is able to mine 54x parallelism on average (46x—63x).
Queue occupancies: Fig. 15 shows the average num-
ber of task queue and commit queue entries used across
the 64-core system. Both queues are often highly uti-
lized. Commit queues can hold up to 1024 finished tasks
(64 per tile). On average, they hold from 216 in des to
821 in astar. This shows that cores often execute tasks
out of order, and these tasks wait a significant time until
they commit—a large speculative window is crucial, as
the analysis in Sec. 2.2 showed. The 4096-entry task
queues are also well utilized, with average occupancies
between 1157 (silo) and 2712 (msf) entries.
Network traffic breakdown: Fig. 16 shows the NoC
traffic breakdown at 64 cores (16 tiles). The cumulative
injection rate per tile remains well below the saturation
injection rate (32 GB/s). Each bar shows the contri-
butions of memory accesses (between the L2s and L3)
issued during normal execution, tasks enqueues to other
tiles, abort traffic (including child abort messages and
rollback memory accesses), and GVT updates. Task
enqueues, aborts, and GVT updates increase network
traffic by 15% on average. Thus, Swarm imposes small
overheads on traffic and communication energy.
Conflict detection energy: Conflict detection re-
quires Bloom filter checks—performed in parallel over
commit queue entries (Fig. 7)—and for those entries
where the Bloom filter reports a match, a virtual time
check to see whether the task needs to be aborted. Both
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events happen relatively rarely. Each tile performs one sampled every 500 cycles, over a 100 Kcycle interval: the
Bloom filter check every 8.0 cycles on average (from 2.5 breakdown of core cycles (top row), commit and task
cycles in msf to 13 cycles in bfs). Each tile performs queue lengths (middle row), and tasks commit and abort
one timestamp check every 49 cycles on average (from 6 events (bottom row). Each column shows these metrics
cycles in msf to 143 cycles in astar). Hence, Swarm’s for a single tile.
conflict detection imposes acceptable energy overheads. Fig. 18 shows that task queues are highly utilized
Canary virtual times: To lower overheads, all lines throughout the interval. As task queues approach their
in the same L2 set share a common canary virtual time. capacity, coalescer tasks kick in, spilling tasks to memory.
This causes some unnecessary global conflict checks, but Commit queues, however, show varied occupancy. As
we find the falsely unfiltered checks are infrequent. At 64 tasks are executed out of order, they use a commit queue
cores, using precise per-line canary virtual times reduces entry until they are safe to commit (or are aborted).
global conflict checks by 10.3% on average, and improves Most of the time, commit queues are large enough to
application performance by less than 1%. decouple execution and commit orders, and tiles spend
the vast majority of time executing worker tasks.
6.4 Sensitivity Studies Occasionally, however, commit queues fill up and cause
We explore Swarm’s sensitivity to several design pa- the cores to stall. For example, tiles stall around the
rameters at 64 cores: 40 Kcycle mark as they wait for a few straggler tasks to
Commit queue size: Fig. 17(a) shows the speedups finish. The last of those stragglers finishes at 43 Kcycles,
of different applications as we sweep aggregate commit and the subsequent GVT update commits a large num-
queue entries from 128 (8 tasks per tile) to unbounded; ber of erstwhile speculative tasks, freeing up substantial
the default is 1024 entries. Commit queues are funda- commit queue space. These events explain astar’s sen-
mental to performance: fewer than 512 entries degrade sitivity to commit queue size as seen in Fig. 17(a).
performance considerably. More than 1024 entries con- Finally, note that although queues fill up rarely, com-
fer moderate performance boosts to some applications. mits tend to happen in bursts throughout the run. This
We conclude that 1024 entries strikes a good balance shows that fast commits are important, as they enable
between performance and implementation cost for the Swarm to quickly turn around commit queue entries.

benchmarks we study.

Bloom filter configuration: Fig. 17(b) shows the rel- 7. ADDITIONAL RELATED WORK

ative performance of different Bloom filter configurations. Prior work has studied the limits of instruction-level
The default 2048-bit 8-way Bloom filters achieve perfor- parallelism under several idealizations, including a large
mance within 10% of perfect conflict detection. Smaller or infinite instruction window, perfect branch prediction
Bloom filters cause frequent false positives and aborts and memory disambiguation, and simple program trans-
in silo and des, which have the tasks with the largest formations to remove unnecessary data dependences
footprint. However, bfs, sssp, and msf tasks access [4,9,18,20,24,42,49,57,74]. Similar to our limit study,
little data, so they are insensitive to Bloom filter size. these analyses find that parallelism is often plentiful
Frequency of GVT updates: Swarm is barely sen- (>1000x% ), but very large instruction windows are needed
sitive to the frequency of GVT updates. As we vary to exploit it (>100K instructions [42,57]). Our oracle
the period between GV'T updates from 50 cycles to 800 tool focuses on task-level parallelism, so it misses intra-
cycles (the default is 200 cycles), performance at 64 cores task parallelism, which is necessarily limited with short
drops from 0.1% in sssp to 3.0% in msf. tasks. Instead, we focus on removing superfluous depen-
dences in scheduling data structures, uncovering large

6.5 Swarm Case Study: astar amounts of parallelism for irregular applications.
Finally, we present a case study of astar running Several TLS schemes expose timestamps to software
on a 16-core, 4-tile system to analyze Swarm’s time- for different purposes, such as letting the compiler sched-
varying behavior. Fig. 18 depicts several per-tile metrics, ule loop iterations in Stampede [68], speculating across
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barriers in TCC [29], and supporting out-of-order spawn
of speculative function calls in Renau et al. [61]. These
schemes work well for their intended purposes, but can-
not queue or buffer tasks with arbitrary timestamps—
they can only spawn new work if there is a free hard-
ware context. Software scheduling would be required to
sidestep this limitation, which, as we have seen, would
introduce false data dependences and limit parallelism.

Prior work in fine-grain parallelism has developed a
range of techniques to reduce task management over-
heads. Active messages lower the cost of sending tasks
among cores [52,73]. Hardware task schedulers such as
Carbon [41] lower overheads further for specific problem
domains. GPUs [76] and Anton 2 [27] feature custom
schedulers for non-speculative tasks. By contrast, Swarm
implements speculative hardware task management for
a different problem domain, ordered parallelism.

Prior work has developed shared-memory priority
queues that scale with the number of cores [2,75], but
they do so by relaxing priority order. This restricts
them to benchmarks that admit order violations, and
loss of order means threads often execute useless work
far from the critical path [33,34]. Nikas et al. [51] use
hardware transactional memory to partially parallelize
priority queue operations, accelerating sssp by 1.8x
on 14 cores. Instead, we dispense with shared-memory
priority queues: Swarm uses distributed priority queues,
load-balanced through random enqueues, and uses spec-
ulation to maintain order.

Our execution model has similarities to parallel dis-
crete-event simulation (PDES) [21]. PDES events run at
a specific virtual time and can create other events, but
cannot access arbitrary data, making them less general
than Swarm tasks. Moreover, state-of-the-art PDES
engines have overheads of tens of thousands of cycles
per event [6], making them impractical for fine-grain
tasks. Fujimoto proposed the Virtual Time Machine
(VIM), tailored to the needs of PDES [23], which could
reduce these overheads. However, VITM relied on an
impractical memory system that could be indexed by
address and time.

8. CONCLUSIONS

We have presented Swarm, a novel architecture that
unlocks abundant but hard-to-exploit irregular ordered
parallelism. Swarm relies on a novel execution model
based on timestamped tasks that decouples task cre-
ation and execution order, and a microarchitecture that
performs speculative, out-of-order task execution and
implements a large speculation window efficiently. Pro-
grams leverage Swarm’s execution model to convey new
work to hardware as soon as it is discovered rather than
in the order it needs to run, exposing a large amount of
parallelism. As a result, Swarm achieves order-of-magni-
tude speedups on ordered irregular programs, which are
key in emerging domains such as graph analytics, data
mining, and in-memory databases [34,55,71]. Swarm
hardware could also support thread-level speculation
and transactional execution with minimal changes.

Swarm also opens several research avenues. First,
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Swarm’s techniques may benefit a broader class of appli-
cations. For instance, Swarm could be applied to auto-
matically parallelize general-purpose programs more ef-
fectively than prior TLS systems. Second, we have shown
that co-designing the execution model and microarchi-
tecture is a promising approach to uncover parallelism.
Investigating new or more general execution models may
expose additional parallelism in other domains. Third,
Swarm shows that globally sequenced execution can be
scalable even with fine-grained tasks. With additional
work, Swarm’s techniques could be scaled to multi-chip
and multi-machine systems. These topics are the subject
of our ongoing and future work.

9. ACKNOWLEDGMENTS

We sincerely thank Nathan Beckmann, Harshad Kas-
ture, Anurag Mukkara, Li-Shiuan Peh, Po-An Tsali,
Guowei Zhang, and the anonymous reviewers for their
helpful feedback. M. Amber Hassaan and Donald Nguyen
graciously assisted with Galois benchmarks. This work
was supported in part by C-FAR, one of six SRC STAR-
net centers by MARCO and DARPA, and by NSF grant
CAREER-1452994. Mark Jeffrey was partially sup-
ported by a MIT EECS Jacobs Presidential Fellowship
and an NSERC Postgraduate Scholarship.

10. REFERENCES

[1] “9th DIMACS Implementation Challenge: Shortest Paths,”
2006.

D. Alistarh, J. Kopinsky, J. Li et al., “The SprayList: A
scalable relaxed priority queue,” in PPoPP, 2015.

40962128 ternary CAM datasheet (28nm), Analog Bits, 2011.
T. Austin and G. Sohi, “Dynamic dependency analysis of
ordinary programs,” in ISCA-19, 1992.

D. Bader, H. Meyerhenke, P. Sanders et al., Eds., 10th DI-
MACS Implementation Challenge Workshop, 2012.

P. Barnes Jr, C. Carothers, D. Jefferson et al., “Warp speed:
executing time warp on 1,966,080 cores,” in PADS, 2013.

G. Blelloch, J. Fineman, P. Gibbons et al., “Internally deter-
ministic parallel algorithms can be fast,” in PPoPP, 2012.

S. Brand and R. Bidarra, “Multi-core scalable and efficient
pathfinding with Parallel Ripple Search,” Computer Anima-
tion and Virtual Worlds, 23(2), 2012.

M. Butler, T.-Y. Yeh, Y. Patt et al., “Single instruction
stream parallelism is greater than two,” in ISCA-18, 1991.
J. Carter and M. Wegman, “Universal classes of hash functions
(extended abstract),” in STOC-9, 1977.

L. Ceze, J. Tuck, J. Torrellas et al., “Bulk disambiguation of
speculative threads in multiprocessors,” in ISCA-33, 2006.
S. Chandrasekaran and M. Hill, “Optimistic simulation of
parallel architectures using program executables,” in PADS,
1996.

M. Cintra and D. Llanos, “Toward efficient and robust
software speculative parallelization on multiprocessors,” in
PPoPP, 2003.

J. Corbett, J. Dean, M. Epstein et al., “Spanner: Google’s
globally distributed database,” ACM TOCS, 31(3), 2013.

T. Cormen, C. Leiserson, R. Rivest et al., Introduction to
Algorithms, 3rd ed. MIT Press, 2009.

T. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM TOMS, 38(1), 2011.

J. Devietti, B. Lucia, L. Ceze et al., “DMP: deterministic
shared memory multiprocessing,” in ASPLOS-XIV, 2009.
K. Ebcioglu, E. Altman, M. Gschwind et al., “Optimizations
and oracle parallelism with dynamic translation,” in MICRO-
32, 1999.

[9]
(10]
(11]

(12]

(13]

[14]
(15]
[16]
(17]

(18]



(19]
20]

21]

[22]

23]
(24]

25]

[26]

27]

(28]
[29]
(30]

(31]

(32]

(33]

(34]
(35]

(36]

(37]
(38]
(39]
(40]

41]

[42]
[43]
[44]
(45]

[46]

[47]
(48]

[49]

[50]

H. Esmaeilzadeh, E. Blem, R. St Amant et al., “Dark silicon
and the end of multicore scaling,” in ISCA-88, 2011.

E. Fatehi and P. Gratz, “ILP and TLP in shared memory
applications: a limit study,” in PACT-23, 2014.

A. Ferscha and S. Tripathi, “Parallel and distributed simu-
lation of discrete event systems,” U. Maryland, Tech. Rep.,
1998.

M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” in FOCS, 1984.

R. Fujimoto, “The virtual time machine,” in SPAA, 1989.

S. Garold, “Detection and parallel execution of independent
instructions,” IEEE Trans. Comput., 19(10), 1970.

M. J. Garzaran, M. Prvulovic, J. M. Llaberia et al., “Trade-
offs in buffering speculative memory state for thread-level
speculation in multiprocessors,” in HPCA-9, 2003.

S. Ghemawat and P. Menage, “TCMalloc: Thread-caching
malloc http://goog-perftools.sourceforge.net/doc/tcmalloc.
html.”

J. Grossman, J. Kuskin, J. Bank et al., “Hardware support
for fine-grained event-driven computation in Anton 2,” in
ASPLOS-XVIII, 2013.

L. Hammond, M. Willey, and K. Olukotun, “Data speculation
support for a chip multiprocessor,” in ASPLOS-VIII, 1998.
L. Hammond, V. Wong, M. Chen et al., “Transactional mem-
ory coherence and consistency,” in ISCA-31, 2004.

T. Harris, J. Larus, and R. Rajwar, “Transactional memory,”
Synthesis Lectures on Computer Architecture, 2010.

P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans.
on Systems Science and Cybernetics, 4(2), 1968.

M. A. Hassaan, D. Nguyen, and K. Pingali, “Brief announce-
ment: Parallelization of asynchronous variational integrators
for shared memory architectures,” in SPAA, 2014.

M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs.
unordered: a comparison of parallelism and work-efficiency
in irregular algorithms,” in PPoPP, 2011.

M. A. Hassaan, D. Nguyen, and K. Pingali, “Kinetic Depen-
dence Graphs,” in ASPLOS-XX, 2015.

M. Hill and M. Marty, “Amdahl’s Law in the Multicore Era,”
Computer, 41(7), 2008.

D. Hower, P. Montesinos, L. Ceze et al., “T'wo hardware-based
approaches for deterministic multiprocessor replay,” Comm.
ACM, 2009.

T. Issariyakul and E. Hossain, Introduction to network simu-
lator NS2. Springer, 2011.

D. Jefferson, “Virtual time,” ACM TOPLAS, 7(3), 1985.

J. Jun, S. Jacobson, J. Swisher et al., “Application of discrete-
event simulation in health care clinics: A survey,” Journal of
the operational research society, 50(2), 1999.

C. Kim, D. Burger, and S. Keckler, “An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches,” in
ASPLOS-X, 2002.

S. Kumar, C. Hughes, and A. Nguyen, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,”
in ISCA-34, 2007.

M. Lam and R. Wilson, “Limits of control flow on parallelism,”
in ISCA-19, 1992.

C. Leiserson and T. Schardl, “A work-efficient parallel
breadth-first search algorithm,” in SPAA, 2010.

A. Lew, J. Marsden, M. Ortiz et al., “Asynchronous varia-
tional integrators,” Arch. Rational Mech. Anal., 167(2), 2003.
T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: efficient
deterministic multithreading,” in SOSP-23, 2011.

C. Luk, R. Cohn, R. Muth et al., “Pin: building customized
program analysis tools with dynamic instrumentation,” in
PLDI; 2005.

J. Misra, “Distributed discrete-event simulation,” ACM Com-
puting Surveys (CSUR), 18(1), 1986.

K. Moore, J. Bobba, M. Moravan et al., “LogTM: Log-based
transactional memory,” in HPCA-12, 2006.

A. Nicolau and J. Fisher, “Using an oracle to measure po-
tential parallelism in single instruction stream programs,” in
MICRO-1/, 1981.

K. Nii, T. Amano, N. Watanabe et al., “A 28nm 400MHz 4-
Parallel 1.6Gsearch/s 80Mb Ternary CAM,” in ISSCC, 2014.

14

[51]

[52]

[53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]
[64]

(65]

[66]

[67)

[68]

(69]

[70]
[71]
[72]

(73]

(74]
[75]
[76]

[77]

(78]

[79]

(80]

K. Nikas, N. Anastopoulos, G. Goumas et al., “Employing
transactional memory and helper threads to speedup Dijk-
stra’s algorithm,” in /CPP, 2009.

M. Noakes, D. Wallach, and W. Dally, “The J-Machine mul-
ticomputer: an architectural evaluation,” in ISCA-20, 1993.

OpenStreetMap, “http://www.openstreetmap.org.”

R. Panigrahy and S. Sharma, “Sorting and searching using
ternary CAMs,” IEEE Micro, 23(1), 2003.

K. Pingali, D. Nguyen, M. Kulkarni et al., “The tao of paral-
lelism in algorithms,” in PLDI, 2011.

L. Porter, B. Choi, and D. Tullsen, “Mapping out a path
from hardware transactional memory to speculative multi-
threading,” in PACT-18, 2009.

M. Postiff, D. Greene, G. Tyson et al., “The limits of instruc-
tion level parallelism in SPEC95 applications,” Comp. Arch.
News, 27(1), 1999.

X. Qian, B. Sahelices, and J. Torrellas, “OmniOrder:
Directory-based conflict serialization of transactions,” in
ISCA-41, 2014.

S. Reinhardt, M. Hill, J. Larus et al., “The Wisconsin Wind
Tunnel: virtual prototyping of parallel computers,” in SIG-
METRICS, 1993.

J. Renau, K. Strauss, L. Ceze et al., “Thread-level speculation
on a CMP can be energy efficient,” in ICS’05, 2005.

J. Renau, J. Tuck, W. Liu et al., “Tasking with out-of-order
spawn in TLS chip multiprocessors: microarchitecture and
compilation,” in ICS’05, 2005.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems,”
in ISCA-40, 2013.

D. Sanchez, L. Yen, M. Hill et al., “Implementing signatures
for transactional memory,” in MICRO-40, 2007.

D. Sanchez, R. Yoo, and C. Kozyrakis, “Flexible architectural
support for fine-grain scheduling,” in ASPLOS-XV, 2010.

S. Schneider, C. Antonopoulos, and D. Nikolopoulos, “Scal-
able locality-conscious multithreaded memory allocation,” in
ISMM-5, 2006.

G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar proces-
sors,” in [SCA-22, 1995.

L. Soule and A. Gupta, “An evaluation of the Chandy-
Misra-Bryant algorithm for digital logic simulation,” ACM
TOMACS, 1(4), 1991.

J. G. Steffan, C. Colohan, A. Zhai et al., “A scalable approach
to thread-level speculation,” in ISCA-27, 2000.

J. G. Steffan and T. Mowry, “The potential for using thread-
level data speculation to facilitate automatic parallelization,”
in HPCA-4, 1998.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn et al., “CACTI
5.1,” HP Labs, Tech. Rep. HPL-2008-20, 2008.

S. Tu, W. Zheng, E. Kohler et al., “Speedy transactions in
multicore in-memory databases,” in SOSP-24, 2013.

A. Varga and A. Sekercioglu, “Parallel simulation made easy
with OMNeT++, 2003.

T. Von Eicken, D. Culler, S. Goldstein et al., “Active messages:
a mechanism for integrated communication and computation,”
in ISCA-19, 1992.

D. Wall, “Limits of instruction-level parallelism,” in ASPLOS-
1V, 1991.

M. Wimmer, F. Versaci, J. Traff et al., “Data structures for
task-based priority scheduling,” in PPoPP, 2014.

C. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100
GPU architecture,” IEEE Micro, 31(2), 2011.

M. Xu, R. Bodik, and M. Hill, “A flight data recorder for
enabling full-system multiprocessor deterministic replay,” in
ISCA-30, 2003.

C. Yang and B. Miller, “Critical path analysis for the ex-
ecution of parallel and distributed programs,” in ICDCS,
1988.

L. Yen, J. Bobba, M. Marty et al., “LogTM-SE: Decoupling
hardware transactional memory from caches,” in HPCA-13,
2007.

Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for
speculative parallelization of partially-parallel loops in DSM
multiprocessors,” in HPCA-5, 1999.


http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.openstreetmap.org

	Introduction
	Motivation
	Ordered Irregular Parallelism
	Analysis of Ordered Irregular Algorithms

	Background on HW Support for Speculative Parallelism
	Swarm: An Architecture for Ordered Parallelism
	ISA Extensions and Programming Model
	Task Queuing and Prioritization
	Speculative Execution and Versioning
	Virtual Time-Based Conflict Detection
	Selective Aborts
	Scalable Ordered Commits
	Handling Limited Queue Sizes
	Analysis of Hardware Costs

	Experimental Methodology
	Evaluation
	Swarm Scalability
	Swarm vs Software Implementations
	Swarm Analysis
	Sensitivity Studies
	Swarm Case Study: astar

	Additional Related Work
	Conclusions
	Acknowledgments
	References

